STANDARDS

David Chesney and Gabor Té6th

January 31, 2026

Contents

1 Data Naming Standard
Introduction
Basic Considerations
Physics and Software Modules
File Names
Inter-Module Procedure Names
Inter-Module Variable Names
Intra-Module Procedure Names for BATSRUS
Intra-Module Variable Names for BATSRUS

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1.8.1
1.8.2
1.8.3
1.84
1.8.5
1.8.6

[oclle ol <IN BENEEN le NV IRV, BNV | |

Name parts o o o e e e e e e e e
Indication of variable type 9
Array variable names L. Lo e 10
Indication of scope of variables L 10
Namedindexes e 11
Lists of name parts

CONTENTS

Chapter 1

Data Naming Standard

1.1 Introduction

The Center for Space Environment Modeling (CSEM) is developing a software framework which consists of science
modules representing various physical domains, and the framework itself, which connects the science modules. It
is important to develop some data naming standards so that the independently developed science modules and the
framework can be compiled together. Also it is useful to have consistent naming when many developers work together
on the same part of the software.

The naming standard refers to all variable, procedure and file names used in the framework and the science mod-
ules. Here variable name means any constant, variable, type, structure, object, class or Fortran 90 module name, while
procedure name means subroutine, function, or method names in general.

The purposes of the naming standard are the following:

e Avoid name conflicts between various modules of the framework.

Extensibility for case when intra-module dataflow name is modified to inter-module dataflow.

o Characteristics of variables, procedures and files are explicitly understood from the name.

Allow consistent names within modules developed my more than one programmer.

e Improved code readability allows outside programmers to be used.

Language (F90, C++, etc.) independence of variable and procedure names.

Representation in Backus-Naur Form (BNF), and thus, ability to apply syntax checking tools.

1.2 Basic Considerations

The science modules are independent in terms of variables, on the other hand, in the current bottom-up design the
procedures of all modules will be compiled into a single executable. This means that modules must avoid procedure
name conflicts.

For example the BO module will be present on all processors, and it has to have procedure names that differ from
the procedure names of the magnetosphere, ionosphere, heliosphere etc. modules. This restriction does not exclude
the possibility of using more than one instance of the same general module. For example, if both the magnetosphere
and the heliosphere are modeled by the same general magnetohydrodynamic module, the procedure names will be the
same, thus these module must run on separate sets of processors.

Since the science modules are mostly developed by scientists and not by software engineers, it seems reasonable
to minimize the constraints on the data naming. The minimum requirements seem to be the following

5

6 CHAPTER 1. DATA NAMING STANDARD

o All procedure names of a module must contain a unique identifier for the module.

e The control module should be able to define or modify all file names (e.g. input parameter and output data file
names) used by the other modules.

The procedure names must start with the two-letter module name acronyms, and the control module will use a directory
name containing the same acronym for the input and output files for each module.

An important simplification is that we allow for intra- and inter-module naming standard. When a single science
module is being developed, one may use the intra-module naming system. When the science modules are coupled
together, an automatic Perl script can add the unique prefixes for each procedures in each modules.

1.3 Physics and Software Modules

Physics modules represent a certain physics domain. There are only a well defined set of these modules, which all
have two character abbreviations:

CE Cometary Environment
EE Eruptive Events
GM Global Magnetosphere
IE Ionosphere Electrodynamics
IH Inner Heliosphere
IM Inner Magnetosphere
IN Interstellar Neutrals
IO Tonosphere
OH Outer Heliosphere
PL Plasmasphere
PS Planetary Satellites
PW Polar Wind
RB Radiation Belt
SC Solar Corona
TH Thermosphere

We also define MH for the generic magnetohydrodynamic physics module, which can model GM, IH, SC, OH, and
possibly EE.

In addition to physics modules there will be some general purpose software modules. One example is the TIMING
module, which can time nested procedure calls, and report the timing results in various ways. Other examples can
be general parallel linear solvers, error handlers, etc. These modules also have identifiers in all capital letters, but the
identifier can have arbitrary length. The control module of the framework is also a software module, which controls
and provides communication between the physics modules.

We note here that physics and software modules have nothing to do with Fortran 90 modules. Fortran 90 modules
are simply collections of variables and procedures within a physics or software module.

1.4. FILE NAMES 7

1.4 File Names

File names of source files should reflect the content. If a source file contains a single procedure, it should be named
the same as the intra-module name of the procedure with an extension specific to the language. For example a Fortran
90 source code file containing subroutine calc_flux should be named calc_flux.£90. If the source code
is in Fortran 77 or C/C++, the extension is . £ or . c respectively. If a source file contains a set of procedures, it should
be named by a group name that describes the set of procedures, or by the main procedure in the group. If a source file
containes a Fortran 90 module, it should be named accordingly, e.g. the file containing the ModMain module should
be named ModMain. £90.

Source files will reside in separate directories for each module, therefore it is not necessary to include the module
identifier into the file name.

1.5 Inter-Module Procedure Names

We distinguish intra-module procedure names and inter-module procedure names. Intra-module procedure names are
used within a module, while inter procedure names are used in the framework. The conversion between these will be
automatized, for example with the aid of a Perl script. This means that the modules can use arbitrary procedure names,
still the name conflicts can be avoided.

The inter-module procedure names start with the physics/software module abreviation (see the list in the previous
section) in all capitals, followed by an undescore, then followed by the intra-procedure name.

Here are some possible examples for the full inter-procedure names:

name ! meaning

GM_calc_flux ! Global magenetosphere flux calculation
IH get_var ! inner heliosphere variable extraction
MH_get_var ! generic MHD variable extraction
MH_update_Db0 ! generic MHD BO update

TIMING_start ! TIMING software module starts timing

Note that in the examples above the MHD module is not associated with a single physics module, thus it uses the
module name MH. The control module will only call the subroutines for specific physics modules, e.g. for the inner
heliosphere. These subroutines have to be all defined as simple interfaces for the generic MH_x subroutine.

1.6 Inter-Module Variable Names

Similarly to procedure names we distinguish intra-module and inter-module variable names. Intra-module variable
names are used within each science module, and also in most software modules. The main exception is the control
module, which must communicate with many other modules, and thus it uses inter-module variable names.

Inter-module variable names start with a prefix, which consists of the two character abbreviation of the physics
module, followed by a type indicator, an optional dimension indicator, and an underscore. The prefix is then followed
by the intra-module variable name. The type indicator can be the following:

b boolean

h 2-byte-integer
i 4-byte-integer
j 8-byte-integer

r real

8 CHAPTER 1. DATA NAMING STANDARD

d double precision real
¢ character

S string

e enumerated value
m F90 module

t type/structure

The dimension indicator is a positive integer number, which gives the number of indices for array variables. For scalar
variables it is omitted. Some examples for prefixes:

GMr3_ - Global magnetosphere, real 3D array
IHi_ — Inner heliosphere, integer scalar

1.7 Intra-Module Procedure Names for BATSRUS

The intra-module procedure name consists of procedure name parts separated by undescores. A procedure name part
starts with a lower case letter, followed by an arbitrary number of lower case letters and numbers. The use of lower case
letters and undescores between the procedure name parts helps to distinguish procedure names from variable names,
which use capitalization (see later). The intra-procedure name should describe the action done by the procedure, so it
typically starts with a verb. Examples:

name ! meaning

advance_impl ! advance in time with implicit scheme
calc_face_flux ! calculate face fluxes

set_b0 ! set the BO magnetic field

set_ics ! set initial conditions
read_restart_file ! generic MHD B0 update

1.8 Intra-Module Variable Names for BATSRUS

The following suggestions were developed by G. T6th and D. De Zeeuw for the magnetosphere module (the main part
of BATSRUS). The original system was later improved by D. Chesney. The suggested naming system tries to resemble
the current somewhat chaotic naming system to minimize the difficulties of the transition. More importantly we tried
to create logical, unique, distinct and easy to read and write variable names. This naming system has been used in some
recently written subroutines, and our limited experience shows that it works reasonably well, and definitely better than
the current lack of system.

1.8.1 Name parts

Each intra-module variable name may consist of one or more name parts. All the parts must start with a capital letter
and continue with lower case letters and numbers. There are two exceptions to this rule: (i) if the first name part
consists of a single character, it should be lower case; (ii) the last name part may be one of the three scope descriptors
BLK, PE, and ALL, which consists of all capital letters. In Fortran capitalization is ignored by the compiler, so
mistakes in the capitalization have no effect on the correctness of the code. On the other hand consistent capitalization
is essential to improve readability of the code. Examples of correct capitalizations:

1.8. INTRA-MODULE VARIABLE NAMES FOR BATSRUS 9

i

iMax
UseConstrainB
DtALL
nBlockExpl
CflImpl

R2Min
InnerBcType

1.8.2 Indication of variable type

There are strict rules in this data naming standard to indicate the type (module, real, integer, logical, character string)
of a variable. These rules are made as easy to read and write as possible:
Fortran 90 module names start with

Mod

All integer variable names must start with one of the following name parts:

Min
Max
Int

All character and character string type variable names must start with any of

Name
Type
String
All logical variable names must start with one of

Do
Done
Is

Use
Used
Unused

Finally all real type variable names must start with a name part which was not listed in any of the above lists.

In addition to the consistent data names, we must make sure that the compiler checks the declaration and use of
variables, thus the implicit none statement must be used in every single procedure in Fortran source code.

These rules should also help to make the order of the name parts less arbitrary. For example the minimum of the
pressure should be named pMin and not MinP, because it is a real number which cannot start with the name part Min
which is reserved for integers. Examples:

10

CHAPTER 1. DATA NAMING STANDARD

UseConstrainB - logical
UnusedBlock - logical
nBlockUsed - integer

iProc - integer

RhoSwDim - real

xTest - real

TypeFlux - character string
NamePlotFile — character string

1.8.3 Array variable names

Array variable names are distinguished from scalar variable names by the indication of indexes. The indexes are
represented by an underscore followed by capital case letters at the end of the array variable name. Each capital letter
represents one or more well defined indexes, and their order must be the same as the order of indexes in the declaration
of the array variable. The following index abbreviations are defined:

:nBlockALL)

:nBlock)

:nI,1l:nJd,1l:nkK)

:nDim)

:2+*nDim)
:nI+1l,1:nJd+1,1:nK+1)
-1:nI+2,-1:nJd+2,-1:nK+2)

—~ o~~~ o~~~
I

1: nI+l 1:nJ+1, 1:nK+1)
,—1:1,-1:1)

nProc)

:4)

:2)

:nvar)

:nI+l,1:nJ,1:nkK)

:nI,1l:nJ+1,1:nkK)

:nI,1l:nJd,1l:nK+1)

N KX <O U"2zx"HOTETQDW

(
(=
(
(
(
(
(
(
(

s sul el on

meaning

global blocks
local blocks
physical cells
dimensions

edges

faces

ghost cells
general index (none of the others)
corners
neighbors
processors
quadrants

sides

(flow) wvariables
X faces

Y faces

Z faces

If there are many general indexes, one can use _I 3 instead of _III. Examples:

Dx_B(:) - real array indexed by blocks

GradRho_C(:, :, 1) - real array indexed by cells

BOx_XB(:,:,:,:) - real array indexed by the X faces and blocks
nRoot_D(:) - integer array indexed by the 3 directions (x,y,2z)

1.8.4 Indication of scope of variables

Some scalar variables or array elements refer to a single cell, of cell face, others refer to a whole block, processor,
or even all the processors used by the module. For example in the current BATSRUS code dt is the time step
for the whole simulation domain (i.e. all the processors), dt _BLK (1) is the smallest time step for the first block,
time BLK (1, 1,1,1) is the time step for a single cell in the first block, while TimeCell is the time step for the
cell being updated. The current names are somewhat arbitrary. In the new naming system the different scopes of a
scalar variable or array element can be indicated by the following name parts:

1.8. INTRA-MODULE VARIABLE NAMES FOR BATSRUS 11

BLK - one block
PE — one processing element
ALL — all the processing elements used by the module

These name parts are all capital, and they must be the last name part for scalars, and the last name part before the
underscore for arrays. In the new naming system the above mentioned variables will become

New name 0ld name Meaning

DtALL dt global time step

DtBLK_B dt_BLK minimum time step for blocks
Dt_CB time_BLK local time step for cells

Dt TimeCell local time step for one cell

The last two names of the scalar dt and the four dimensional array dt _CB only differ in the array index abbreviations.
When the scope is not explicitly indicated, we assume the smallest scope that makes sense. For example nBlock
is the number of blocks for a processor, while nBlockALL is the total number of blocks used by the module.

1.8.5 Named indexes

In the planned rewrite of BATSRUS, many variables will be collected into more general arrays. For example the
conservative variables rho_.BLK, rhoUx_BLK, ... E_BLK will be putinto a single array Var_GVB, i.e. the vari-
able array is indexed by (ghost) cells, variable, and block number. Similarly the coordinate arrays x BLK, y_BLK,
z_BLK will be merged into Xy z_GDB, i.e. the coordinate array is indexed by ghost) cells, directions, and block number.

To make the variable and dimension indexes easier to read, named indexes are introduced. A named index is an
integer constant (defined with the parameter statement in Fortran 90). The named index consists of the usual name
parts followed by an underscore. The underscore is a reminder that named indexes have to do with arrays, and it also
makes the syntax of named indexes different both from scalar and array variable names. Here is a list of named indexes
(to be) introduced in BATSRUS:

name value meaning

X_ 1 X index

v_ 2 Y index

zZ_ 3 Z index

Rho__ 1 density index
RhoU__ 1 momentum index
RhoUx__ 2 X momentum index
RhoUy_ 3 Y momentum index
RhoUz__ 4 Z momentum index
B_ 4 magnetic field index
Bx 5 Bx index

By_ 6 By index

Bz 7 Bz index

e_ 8 energy index

P_ 9 pressure index

Examples of use:
! F_x[rho] = rho*U_x

Flux_FDV (i, j, k,x_,Rho_)=Var_FV (i, j,k,RhoUx_)

' F_i[rho] = rhoU_1i
Flux_FDV (i, j, k,1iDim, Rho_)=Var_FV (i, j, k,RhoU_+iDim)

12 CHAPTER 1. DATA NAMING STANDARD

Note the use of RhoU_+iDim which gives the index for the iDim-th component of the momentum. Both the flux and
the variable arrays are face centered.

When velocity is used instead of momentum and/or spherical components are used instead of Cartesian, the fol-
lowing named indexes can be used:

name value meaning

U_ 1 velocity index

Ux_ 2 X velocity index

Uy_ 3 Y velocity index

Uz 4 Z velocity index

r_ 1 Radial coordinate index
Phi_ 2 Phi coordinate index
Theta__ 3 Theta coordinate index

Ur_ 2 Radial velocity index
Uphi_ 3 Phi velocity index

Utheta_ 4 Theta velocity index

Br_ 2 Radial magnetic field index
Bphi__ 3 Phi magnetic field index
Btheta_ 4 Theta magnetic field index

1.8.6 Lists of name parts

General

name meaning

c constant (real, parameter ::)
d difference

Dim dimensional/dimension

Do do something or not (logical)
Dt time step, time interval

Dn difference in time step index
i index or index in direction X
3 2nd index or index in direction Y
k 3rd index or index in direction Z
Min minimum of

Max maximum (number) of

n number of

Par parameter

Read read input file

Write write output file

Save save output file

Coeff coefficient

Crit criteria

Test test of

Use use a module/scheme (logical)

Basic flow variables

name meaning

1.8. INTRA-MODULE VARIABLE NAMES FOR BATSRUS

X X direction/coordinate
Y direction/coordinate
V4 Z direction/coordinate
Xy Z coordinate in general
R radial distance from origin
R2 radial distance from 2nd body
Time time
Gamma adiabatic index
Clight speed of light
Rho density
U velocity
Ux x component of velocity
Uy y component of velocity
Uz z component of velocity
P pressure
T temperature
E energy
Ex x component of electric field
Ey y component of electric field
Ez z component of electric field
B magnetic field
Bx x component of magnetic field
By y component of magnetic field
Bz z component of magnetic field
BO split part of field
BOx x component of split field
BOy y component of split field
BOz z component of split field
JIx x component of current
Jy y component of current
Jz z component of current
Var variable in general
Flux flux
Source source term
Sw solar wind
Cme coronal mass ejection
Arc magnetic arcade in the solar corona
Discretization
name meaning
Inner inner boundary at the surface of the body
Outer outer boundary of the computational domain
Upstream upstream boundary towards the sun
Iter iterations for this run)
Step time step for the whole (restarted) simulation
Stage stage of the time discretization
Update update of variables to the next time step
Expl explicit time stepping

Impl implicit time stepping

14

Bdf2
Cfl
Krylov
Bicgstab
Gmres
Matvec
Newton
Schwarz
Precond
Mbilu
Rusanov
Linde
Roe
Sokolov
Grad
Limiter
Beta
Minmod
Mc

Eps
Project
Diff
Powell
Constrain

AMR grid

Cell
Coarsen
Face
Block
Nei

Lev
Octree
Prolong
Refine
Restrict
Root
Proc
Used
Unused

CHAPTER 1. DATA NAMING STANDARD

Backwad Difference Formula 2
Courant-Friedrich-Lewy number (<1.0 for explicit)
Krylov type iterative linear solver

Bi-Conjugate Gradient STABilized scheme (Krylov type)
General Minimum RESidual scheme (Krylov type)
matrix vector multiplication in iterative solver
Newton iteration for non-linear problem

Schwarz type blockwise preconditioning
preconditioner to accelerate convergence
modified block incomplete lower-upper preconditioner
Rusanov’s numerical flux function

Linde’s numerical flux function

Roe’s numerical flux function

Sokolov’s numerical flux (artificial wind)
gradient

function that limits slopes to avoid oscillations
Beta limiter

Minmod slope limiter

Monotonized Central slope limiter

small number

projection of B field to eliminate div B
diffusion of divergence of B

Powell’s source term to advect div B

constrained transport to conserve div B=0

meaning

Adaptive mesh refinement

cell

coarsening of grid

face

block

neighbour of

refinement level

octree of blocks

prolongation of data for refinement
refinement of grid

restriction of data for coarsening
root of octree

processing element

used block/node

unused block/node

