
1 User manual for the util/TIMING module

1.1 Introduction

This module was developed by G. Tóth (2001-). It can be used for timing and
profiling Fortran 90 codes.

It is platform and compiler independent and very easy to use. It can pro-
vide profiling information while the code is running. The amount and type of
information can be easily manipulated.

Profiling with a ’real’ profiler is compiler and platform dependent, it can
only be done after the run is finished, and the amount and type of information
is not always easy to manipulate. On the other hand a profiler may provide
more accurate and detailed information than this timing module, and it does
not require changes of the code.

1.2 Usage

The TIMING module can time anything identified by a name string. Here is a
short example of usage:

call timing_version(on,vname,vnum)! check the version

call timing_comp_proc(’GM’,iProc) ! Set the component name and PE number

....

if(iProc==0) &

call timing_active(.true.) ! Activate timing on processor zero

call timing_step(0) ! Initialize step value

call timing_start(’main’) ! Start timing the main code

...

do nstep=1,100

call timing_step(nstep) ! Put step into timing module

call timing_start(’whatever’) ! Start timing

... ! Do whatever

call timing_stop(’whatever’) ! Stop timing

call timing_show(’whatever’,1) ! Show last timing for whatever

if (mod(nstep,10)==0) then

write(*,*) & ! Obtain and write speed

’speed of whatever is’,

1./timing_func_d(’sum/iter’,1,’whatever’,’main’),&

’ iterations/sec’

call timing_report ! Show tree of timings for last 10 steps

call timing_reset_all ! Reset timing

end if

end do

call timing_stop(’main’) ! Stop timing the main code

call timing_report_total ! Show all timings as a sorted list

call timing_report_style(’tree’) ! Change report style

call timing_report_total ! Show all timings in calling tree

The timing version returns three values: the first logical variable ’on’ is true
for a functional timing module, and false for the empty timing module. The
second string variable ’name’ (of length 40) returns the name and the author of
the module, and the last real variable ’number’ returns the version number.

1

The timing comp proc subroutine sets the name of the component and the
processor rank (with respect to some MPI group). This information is needed if
there are multiple components using the timing utility. Both the compnent name
and processor number will be shown in the timing reports. If more components
do timings on the same processor, the timings will be reported together with
the name of the component which called timing comp proc last.

The timing is activated by timing active. For parallel runs one should usu-
ally activate the timing module for one processor only. For timing multiple
components the root processor of each component can be used, for example.
When the timing module is inactive, the timing commands are executed but do
not time and do not provide output.

The timing is done by a pair of timing start and timing stop calls. The
string name arguments of the two calls must match. Make sure that if the
timing start is called then the corresponding timing stop call is also executed.
Timings can be inside loops, and nested arbitrarily. Note, however, that timing
inside a recursive procedure does not work. The timings are distinguished by
the name as well as by the nesting level.

The timing clocks can be reset, and the results of timings can be printed
to the screen or returned into variables in various formats as discussed in the
following sections.

1.2.1 Clocks and resets

There are 3 clocks started and stopped by timing start and timing stop. Clock
1 always measures the latest timings, clock 2 measures cumulative timings since
the last reset, while clock 3 typically measures cumulative timings for the whole
run.

The clocks can be reset by

call timing_reset(’whatever’,2)

which resets clocks 1 and 2 for the timing of ’whatever’. The first string argu-
ment is ’name’, and the second integer argument is ’nclock’, i.e. the number of
clocks to be reset starting with clock 1.

If the ’name’ argument is set to ’#all’, then the clocks 1 to nclock are reset
for all names. The particularly useful and typical call

call timing_reset(’#all’,2)

is identical with the shortcut version

call timing_reset_all

Note that active timings (started but not yet stopped) are not stopped by the
reset, but the start time is overwritten so that only the time after the reset is
measured.

Beside measuring cumulative timings, clocks 2 and 3 also count the number
of ’calls’, and the number of ’iterations’ for each timing entry. The iterations are

2

distinguished by the current step number (a monotonically increasing positive
integer) which can be set by calling timing param put i or timing step, which
are described in the next subsection.

1.2.2 Putting parameters:
timing param put i, timing step, timing depth, timing report style

The integer parameters for the timing module can be set with the generic sub-
routine call

call timing_param_put_i(’depth’,2,error)

where the first string argument is the name of the function, the second integer
is the value, and the third integer argument returns 0 if the parameter was set
successfully, or -1 if it failed.

There are only two integer parameters for the timing module: ’step’ gives
the current step, while ’depth’ is the maximum depth of nested timings. For
these two parameter settings the following short cuts are provided:

timing_step(value) ! same as timing_param_put_i(’step’,value,error)

timing_depth(value) ! same as timing_param_put_i(’depth’,value,error)

The default value for ’step’ is 0. It is expected to be set to a positive integer
value which is monotonously increasing in successive calls.

The default value of ’depth’ is -1, which means that the timings can be
nested arbitrarily deep. If depth is set to 0, then no timing is done at all, while
if depth is set to 1, only the main code is timed.

The style of the report shown by the timing report and timing report total

subroutines is determined by the report style. The default style is ’cumu’,
which produces cumulative timings sorted by the timing values. The ’list’ style
also gives sorted timings, but timings with different calling parents are distin-
guished. Finally the ’tree’ style gives the timings in the format of a nested
calling tree.

1.2.3 Reading the timings: timing func d

The current timing value of clock 2 for ’whatever’ called from ’main’ can be
obtined by the function call

timing_func_d(’sum’,2,’whatever’,’main’)

The first string argument ’func name’ determines the function to be returned.
The available values are ’sum’, ’sum/iter’ and ’sum/call’. The latter two func-
tions only make sense for clocks 2 and 3. The second integer argument ’iclock’
selects the clock. The third string argument ’name’ selects the timing, which is
further specified by the last string argument ’parent name’. The parent is the
timing that was started last but not stopped when the timing for ’whatever’ is
started. The parent of the first timing is itself, so

write(*,*)’Elapsed time=’,timing_func_d(’sum’,1,’main’,’main’)

3

prints out the total time spent by ’main’ since the last reset. The parent is
needed to distinguish between timings called from different places. If the names
do not match, no output is produced.

1.2.4 Show individual timings: timing show

Results for a certain timing can be printed with the timing show command. The
first string argument ’name’ is the name of the timing to be shown, the second
integer argument ’iclock’ is the selected clock number.

For clock 1 the name, the calling parent, and the very last timing are shown:

call timing_show(’calc_gradients’,1)

Last timing for calc_gradients (advance_expl): 0.01 sec

For clock 2 the cumulative timing since the last reset is given. All timings
matching the name (but called from different parents) are shown. The timing
per iteration and per call and the percentage with respect to the parent are also
shown:

call timing_show(’calc_gradients’,2)

Timing for calc_gradients from step 15 to 20 :

0.55 sec, 0.111 s/iter 0.011 s/call 26.66 % of advance_expl

Timing for calc_gradients from step 15 to 20 :

0.01 sec, 0.008 s/iter 0.008 s/call 0.32 % of timing_test

For clock 3 the total timing is reported:

call timing_show(’calc_gradients’,3)

Timing for calc_gradients at step 20 :

1.11 sec, 0.111 s/iter 0.011 s/call 26.69 % of advance_expl

Timing for calc_gradients at step 20 :

0.01 sec, 0.008 s/iter 0.008 s/call 0.16 % of timing_test

1.2.5 Timing reports and profiling:
timing sort, timing tree, timing report

For most purposes one can use the following two generic subroutines

timing_report

! same as timing_sort(2,-1,.true.) if style is ’cumu’

! same as timing_sort(2,-1,.false.) if style is ’list’

! same as timing_tree(2,-1) if style is ’tree’

timing_report_total

! same as timing_sort(3,-1,.true.) if style is ’cumu’

! same as timing_sort(3,-1,.false.) if style is ’list’

! same as timing_tree(3,-1) if style is ’tree’

In the following the general timing tree and timing sort subroutines are de-
scribed in detail.

The timings of all or some of the subroutines can be reported in various
ways. The most complete information is obtained by

4

Table 1: Output of timing tree(2,-1)

TIMING TREE from step 15 to step 20

name #iter #calls sec s/iter s/call percent

timing_test 1 1 2.54 2.536 2.536 100.00

advance_expl 5 5 2.02 0.404 0.404 79.65

calc_gradients 5 50 0.50 0.100 0.010 24.79

calc_facevalues 5 50 1.02 0.203 0.020 50.32

#others 0.50 0.101 24.88

calc_gradients 1 1 0.01 0.008 0.008 0.31

save_output 1 1 0.20 0.201 0.201 7.92

#others 0.32 0.315 12.42

call timing_tree(2,-1)

where 2 is the clock number, and the second argument is the maximum depth
of the tree to be shown (-1 means to show the whole tree). The output is shown
in Table 1. The header indicates that the timing tree was generated at time
step 20 by clock 2 which was restarted at step 15. So the timings refer to 5 time
steps.

The table consists of seven columns and several rows:

1. The 1st column gives the name of the timing. The very first row is the top
of the tree, usually refers the main program. The names below the first row
are indented according to the calling depth: timings called directly from
the top timing are not indented, timings called from these are indented
by 2 spaces, timings called from these are indented by 4 spaces, etc.

2. The 2nd column gives the number of iterations when a timing call was
maede.

3. The 3rd column gives the number of timing calls for an item.

4. The 4th through 6th columns give the actual timings in seconds: total
time, time/iteration and time/call.

5. The 7th column gives the percentage with respect to the calling ’parent’.
The consecutive lines at the same indentation level should always add up
to 100%, because the last row with name ’#other’ contains the untimed
part of any given level.

In the example presented in Table 1 timing test took 2.54 seconds to run
from step 15 to 20. Roughly 80% of the time was spent in advance expl, and
8% on save output. Advance expl itself took 2.01 seconds or 0.4 sec/step. 50%

5

Table 2: Output of timing sort(1,-1,.true.)

SORTED TIMING at step= 20

name sec percent

timing_test 2.54 100.00

advance_expl 0.40 15.77

save_output 0.01 0.31

calc_facevalues 0.02 0.87

calc_gradients 0.01 0.34

initialize 0.00 0.00

of this time was spent on calc facevalues, 25% on calc gradients, and 25% on
other things. Note that calc gradients occurs twice, because it is called from
the main program and advance expl as well.

The amount of detail can be decreased by giving a maximum depth. For
example

call timing_tree(2,2)

will produce a table without the indented 3rd to 5th rows. The timing tree
cannot be used with clock 1, because clock 1 does not accumulate timings,
which makes the information of the table rather difficult to interpret. Clock 1
timings are better presented by the ’timing sort’ subroutine, which is discussed
next.

Another way of representing the timing results is

call timing_sort(1,-1,.true.)

which shows the full uniquely sorted timings for clock 1. The first argument
’iclock’ selects the clock, the second argument ’show length’ defines the max-
imum number of timings shown (-1 means show all), and the third argument
’unique’ determines whether the timings for identical names but different calling
parents should be added up or not. When clock 1 is used the timings are given
for the very last call. A sample output is shown in Table 2. The percentages
are with respect to the longest timing in the first row.

If clock 2 or 3 is used, the table contains the cumulative timings and the
number of steps and calls are also indicated. For example the first four of the
uniquely sorted timings of clock 2 can be obtained with

call timing_sort(2,4,.true.)

which gives an output as shown in Table 3. Note that calc gradients was called
51 times altogether. The last row with name ’#others’ contains the sum of

6

Table 3: Output of timing sort(2,4,.true.)

SORTED TIMING from step= 15 to step= 20

name sec percent #iter #calls

timing_test 2.71 100.00 1 1

advance_expl 2.14 78.88 5 5

calc_facevalues 1.04 38.17 5 50

calc_gradients 0.60 21.96 6 51

#others 0.20 7.40

Table 4: Output of timing sort(3,-1,.false.)

SORTED TIMING at step= 20

name (parent) sec percent #iter #calls

timing_test (timing_test) 5.21 100.00 1 1

advance_expl (timing_test) 4.23 81.23 10 10

calc_facevalues (advance_expl) 2.05 39.38 10 100

calc_gradients (advance_expl) 1.16 22.26 10 100

initialize (timing_test) 0.30 5.76 1 1

save_output (timing_test) 0.20 3.85 1 1

calc_gradients (timing_test) 0.01 0.22 1 1

timings that were not included into the first 4 rows. Also note that the total
percentage exceeds 100% since the timings at different depths overlap.

Finally the original timings can be sorted without adding up values for the
same subroutine. In this case the parents are also indicated, so that timings
with identical names can be distinguished:

call timing_sort(3,-1,.false.)

results in Table 4.

7

1.3 List of subroutines and functions

See the reference manual for a complete and documented list.

option_timing(on,name,number)

timing_active(value)

timing_comp_proc(value1,value2)

timing_param_put_i(name,value,error)

timing_step(value) ! == timing_param_put_i(’step’,value,error)

timing_depth(value) ! == timing_param_put_i(’depth’,value,error)

timing_report_style(value)

timing_start(name)

timing_stop(name)

timing_reset(name,nclock)

timing_reset_all ! == timing_reset(’#all’,2)

timing_show(name,iclock)

timing_sort(iclock,show_length,unique)

timing_tree(iclock,show_depth)

timing_report ! == timing_sort(2,-1,.true.) for style ’cumu’

! == timing_sort(2,-1,.false.) for style ’list’

! == timing_tree(2,-1) for style ’tree’

timing_report_total ! == timing_sort(3,-1,.true.) for style ’cumu’

! == timing_sort(3,-1,.false.) for style ’list’

! == timing_tree(3,-1) for style ’tree’

real*8 function timing_func_d(func_name,iclock,name,parent_name)

8

1.4 Files and make targets

A complete list of make targets in the src and doc directories can be listed with

make help

The actual TIMING module consists of

src/ModTiming.f90

src/timing.f90

src/timing_cpu.f90

The last file contains the call to the actual timing function MPI WTIME, but it
could be replaced with a platform specific function or SYSTEM CLOCK. The
three source files can be compiled into one library module:

libTIMING.a

with the command

cd src

make LIB

Compiler options can be edited in the main directory in

Makefile.conf

which is included into the Makefile. The empty version of the TIMING module
is defined by

srcEmpty/timing_empty.f90

When the TIMING module is not needed for the main code, libTIMING.a should
be produced in the srcEmpty directory. which can be compiled with

cd srcEmpty

make LIB

The empty module does not use any memory, most subroutine calls return
directly to the caller without any output. The exceptions are timing version,
which tells the calling program that the empty timing routine is not functional,
and timing active, which writes a warning message if an attempt is made to
activate the empty timing module.

The use of the TIMING module is fully demonstrated in

src/timing_test.f90

which can be compiled both to a serial and a parallel code, both with the real
and the empty timing module. These four combinations provide 4 tests, which
can be all executed with

cd src

make tests

9

A sample output can be found in

src/tests.log

which was obtained by

cd src

make tests > tests.log

This manual was produced from

doc/MAN_TIMING.tex

doc/TIMING.tex

with

cd doc

make MAN

The src, srcEmpty and doc directories can be cleaned with

make clean

make distclean

10

