
1 Solution Method for the Radiation Hydro-

dynamcs with Gray-Diffusion approxima-

tion

The governing equations of radiation hydrodynamics with gray-diffusion ap-
proximation can be obtained in the first approximation in u/c. They express
the near conservation of mass, momentum, total energy, and radiation en-
ergy:

∂ρ

∂t
+∇ · [ρu] = 0, (1)

∂

∂t
(ρu) +∇ · [ρuu + (p+ pR)I] = 0, (2)

∂(E + ER)

∂t
+∇ · [(E + ER + p+ pR) u] = ∇ ·

[
c

3χ
∇ER

]
, (3)

∂ER

∂t
+∇ · [ERu] + pR∇ · u = ∇ ·

[
c

3χ
∇ER

]
− κPc(ER −

4σ

c
T 4), (4)

where ρ, u, p, T are the density, plasma velocity, gas kinetic pressure, and
temperature, respectively. The total plasma energy density E is related to
the internal plasma energy e:

E =
1

2
ρu2 + ρe. (5)

The radiation field is assumed to be isotropic, so that the radiation pressure
can be obtained from the radiation energy density ER:

pR =
1

3
ER. (6)

The radiation is treated as a fluid that carries momentum and energy. In
essence, equations (1)–(4) describe a two temperature fluid. Two cross-
sections have been introduced, namely the Planck mean opacity κP and an
averaged opacity χ that appears in the radiation diffusion coeffient. To close
the dynamical equations we need equation of state data. If the radiation
is negligible and the material is a polytropic gas, then the internal energy
would be

ρe =
p

γ − 1
, (7)
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where γ is fixed. In general, we can not fix the polytropic index due to
radiation effects. In the following we will fix γ, but instead indicate the
deviation in the internal energy from that of a polytropic hydro-gas by ρe:

ρe =
p

γ − 1
+ ∆(ρe). (8)

This introduces however a new advection equation for this extra internal
energy of the plasma

∂

∂t
∆(ρe) +∇ · [∆(ρe)u] = 0, (9)

which we need to solve together with the other radiation hydrodynamics
equations. The problem will be solved using the shock-capturing schemes of
the BATSRUS code. The left hand side of equations (1)–(4) are in a form
that resembles the pure hydro equations. We will fully exploit this feature, so
that we can solve this with the hydro solvers of BATSRUS. For the analogy
with the hydro equations with have to re-interpret in the hydro solver the
pressure with the total gas kinetic and radiation pressure p+pR. The internal
energy is now given by the total gas and radiation energy

ρe =
p

γ − 1
+ ∆(ρe) + ER,

=
p+ pR
γ − 1

+ ∆(ρe) +
3

2
pR, (10)

where we have fixed γ = 5/3. This indicates that we have to solve yet nother
advection equation for 3pR/2 = ER/2. This is however already accomplished
by the left hand side of the radiation energy equation (4). The solution of
our radiation hydrodynamics equations with gray diffusion approximation is
obtained as follows:

• First solve the hyperbolic part of the equations, which now read

∂ρ

∂t
+∇ · [ρu] = 0, (11)

∂

∂t
(ρu) +∇ · [ρuu + (p+ pR)I] = 0, (12)

∂

∂t
∆(ρe) +∇ · [∆(ρe)u] = 0, (13)
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∂ER

∂t
+∇ · [ERu] + pR∇ · u = 0, (14)

∂

∂t
(
1

2
ρu2+

p+ pR
γ − 1

)+∇·
[(

1

2
ρu2 +

p+ pR
γ − 1

+ p+ pR

)
u

]
− 1

2
pR∇·u = 0,

(15)
where equations (11), (12), and (15) are solved by the hydrodynamic
numerical scheme and the energy equations (13) and (14) are treated
as advected scalar equations. The overall system contains two sound
waves that are modified by the radiation pressure. Since we have chosen
to fix γ on the maximum allowable value of 5/3, we can easily find an
upper bound for the sound speed:

c2 =
γ(p+ pR)

ρ
. (16)

Using this wave speed for the numerical diffusion and determining the
time step of the hyperbolic part of the equations helps to stabilize the
scheme.

• The previous step provides an intermediate solution for the radiative
energy density, denoted as E ′R. Using the deficit in the internal energy
for the plasma and radiation energy density as found by equation (13)
and (14), we can recover the true internal energy of the plasma (denoted
as e′). By applying the equation of state for our materials of choice we
obtain the updated plasma pressure and temperature.

• In the next stage we have to solve for the source terms in the energy
equations. This amounts to solving a coupled system for the plasmas
temperature and radiation temperature (ER ∝ T 4

R):

ρ
∂e(T )

∂t
= κPc(ER −

4σ

c
T 4), (17)

∂ER

∂t
= ∇ ·

[
c

3χ
∇ER

]
− κPc(ER −

4σ

c
T 4) (18)

and advance solution through time step with initial conditions e′ for
the plasma internal energy and E ′R for the radiation energy.
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2 Semi-Implicit Scheme

We describe here the scheme to solve equations (17) and (18) implicitly.
Discretizing in time leads to

En+1
I = E∗I + ∆tK∗

[
En+1

R − (aT 4)n+1
]

(19)

En+1
R = E∗R −∆tK∗

[
En+1

R − (aT 4)n+1
]

+ ∆t∇ ·
[
D∗∇En+1

R

]
(20)

where time level ∗ corresponds to the state after the hydro update, and
we introduced the following notation for internal energy, energy coupling,
radiation diffusion and radiation energy coefficients: EI = ρe, K = κPc,
D = c

3χ
, and a = 4σc. Notice that the coupling and diffusion coefficients are

taken at time level ∗ (frozen coefficients). This leads to a temporally first
order scheme in general (unless the coefficients are constants in time). One
can either

1. solve the coupled system of equations (19) and (20) implicitly or

2. solve equation (19) for En+1
I , substitute the solution back into (20),

and solve the resulting scalar equation (20) implicitly.

Both approaches involve the linearization of the EI(T ) function.
Here we describe the second scheme, because it is more efficient. Note

that if we had heat conduction in (19), then we would have to solve the
coupled system of equations.

First we introduce the Planck function B = aT 4 as a new variable, and
replace EI with it using the chain rule

∂EI

∂t
=
∂EI

∂T

∂T

∂B

∂B

∂t
=

cV
4aT 3

∂B

∂t
(21)

Now equation (19) can be replaced with

Bn+1 = B∗ + ∆tK ′
[
En+1

R −Bn+1
]

(22)

where

K ′ = K∗
4aT 3

cV
(23)

Equation (22) can be solved for

Bn+1 =
B∗ + ∆tK ′En+1

R

1 + ∆tK ′
(24)
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This can be substituted into equation (20) to obtain

En+1
R = E∗R −∆tK∗

[
En+1

R − B∗ + ∆tK ′En+1
R

1 + ∆tK ′

]
+ ∆t∇ ·

[
D∗∇En+1

R

]
(25)

and simplified to

En+1
R = E∗R −∆tK ′′

[
En+1

R −B∗
]

+ ∆t∇ ·
[
D∗∇En+1

R

]
(26)

where

K ′′ =
K∗

1 + ∆tK ′
(27)

It is convenient to introduce ∆ER = En+1
R −E∗R and rearrange equation (26)

as [
1

∆t
+K ′′ −∇ ·D∗∇

]
∆ER = −K ′′ [E∗R −B∗] +∇ · [D∗∇E∗R] (28)

We solve equation (28) for ∆ER using a linear solver, update En+1
R = E∗R +

∆ER and then either

1. obtain Bn+1 from (24), and then get T n+1 and En+1
I , or

2. use a conservative update for the internal energy

The second choice is

En+1
I = En

I + ∆tK ′′
[
En+1

R −B∗
]

(29)

which conserves the total energy to round-off error.
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2.1 Crank-Nicolson scheme

We can attempt to go second order in time with the assumption of (tempo-
rally) constant coefficients using the Crank-Nicolson scheme with β = 1/2:

Bn+1 = B∗ + β∆tK ′
[
En+1

R −Bn+1
]

+ (1− β)∆tK ′ [E∗R −B∗] (30)

En+1
R = E∗R − β∆tK∗

[
En+1

R −Bn+1
]
− (1− β)∆tK∗ [E∗R −B∗]

+β∆t∇ ·
[
D∗∇En+1

R

]
+ (1− β)∆t∇ · [D∗∇E∗R] (31)

We can solve (30) for

Bn+1 =
B∗ + β∆tK ′En+1

R + (1− β)∆tK ′(E∗R −B∗)
1 + β∆tK ′

(32)

This can be substituted into equation (31) to obtain

En+1
R = E∗R − β∆tK∗

[
En+1

R − B∗ + β∆tK ′En+1
R + (1− β)∆tK ′(E∗R −B∗)

1 + β∆tK ′

]
−(1− β)∆tK∗ [E∗R −B∗]
+β∆t∇ ·

[
D∗∇En+1

R

]
+ (1− β)∆t∇ · [D∗∇E∗R] (33)

and can be simplified to

En+1
R = E∗R − β∆tK ′′

[
En+1

R −B∗
]
− (1− β)∆tK ′′ [E∗R −B∗]

+β∆t∇ ·
[
D∗∇En+1

R

]
+ (1− β)∆t∇ · [D∗∇E∗R] (34)

where

K ′′ =
K∗

1 + β∆tK ′
(35)

Equation (34) can be rearranged to[
1

∆t
+ βK ′′ − β∇ ·D∗∇

]
∆ER = −K ′′ [E∗R −B∗] +∇ · [D∗∇E∗R] (36)

Note that the only difference relative to the backward Euler scheme is the
presence of β in equations (36) and (35).

Equation (36) is solved for ∆ER, and we update En+1
R = E∗R + ∆ER, one

can either calculate Bn+1 from equation (32), or do a conservative update
for the internal energy

En+1
I = En

I + β∆tK ′′
[
En+1

R −B∗
]

+ (1− β)∆tK ′′ [E∗R −B∗] (37)
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3 Boundary conditions

The radiation energy is strongly diffusive therefore the boundary conditions
determine the solution more than the initial conditions. We apply the zero
incoming flux condition satisfying

Er +
2D

c
n · ∇Er = 0 (38)

where Er is the radiation energy density, c the speed of light, D = c/(3κR)
is the diffusion coefficient based on the Rosseland mean opacity κR, and n is
the outward pointing normal unit vector. For the left boundary this can be
disretized as

E0 + E1

2
− 2D

c

E1 − E0

∆x
= 0 (39)

where we dropped the subscript r and replaced it with the cell index. Index
1 corresponds to the last physical cell and 0 to the ghost cell. This equation
can be solved for the ghost cell value

E0 =
2D/(c∆x)− 1/2

2D/(c∆x) + 1/2
E1 (40)

For very small opacity D becomes very large, so the ratio will approach one,
i.e. we get a zero gradient condition. If we take into account the flux limiter,
the maximum value for D is

D = cEr/|∇Er| (41)

If we substitute this into the first equation of this section, we get

Er − 2Er = 0 (42)

assuming that n · ∇Er is negative, i.e. the radiation energy is decreasing
outside the boundaries. The factor 2 is probably not correct in this limit. In
any case this does not provide a useful boundary condition. This means that
in the free streaming limit other assumptions are required.
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