
IDL visualization macros

Gábor Tóth
University of Michigan

March 4, 2024

1

Contents

1 Introduction 3

2 IDL path and startup file 3

3 Running IDL 3

4 Reading a snapshot with read data 4

5 Transformation of non-regular grid 5

6 Other grid transformations 7

7 Comparison of data 8

8 Plotting data with plot data and show data 10

9 Function names in string func 11

10 Plotting modes in string plotmode 12

11 Plotting part of the domain 15

12 Multiplot 17

13 Plotting another snapshot 18

14 Animation and plotting with animate data 19

15 Slicing structured 3D data 22

16 Function definitions in funcdef 23

17 Reading logfiles with read log data 25

18 Plotting with plot log data or show log data 26

19 Reading and plotting logfile data with read data and plot data 28

20 Saving plots into postscript and graphics files 28

21 IDL scripts and procedures 30

2

1 Introduction

This document describes the use of the IDL macros in the share/IDL/General/
directory. These macros were originally developed for the Versatile Advection
Code, and modified and improved for BATS-R-US. Since the macros are writ-
ten in a rather general manner, they can be used to visualize and analyze all
kinds of model or observational data as long as it can be read. For example the
plot files from the PWOM, IPIC3D2, FLEKS and ALTOR of the SWMF can
also be visualized and analyzed with these macros. In addition, simple ASCII
files (satellite data, trajectory files, etc.) as well as various lookup tables (for
radiative cooling, equation of state etc.) can be read and visualized. The plot
data modified or created in IDL can be written into files in the same formats.

2 IDL path and startup file

It is necessary to let IDL know about the existence of the macros. You can
define the search path for IDL, for example

setenv IDL_PATH "${HOME}/SWMF/share/IDL/General:<IDL_DEFAULT>"

for the csh or tcsh shell. You can also make IDL to read the idlrc file automat-
ically upon start up with

setenv IDL_STARTUP idlrc

These environment settings can be put into your ˜/.login or ˜/.cshrc files. The
above is valid for the csh and tcsh UNIX shells.

For other UNIX shells (bash, ksh, zsh), use

export IDL_PATH="${HOME}/BATSRUS/share/IDL/General:<IDL_DEFAULT>"

export IDL_STARTUP=idlrc

in the ˜/.profile or similar file.

3 Running IDL

If the IDL PATH and the IDL STARTUP variables are set, simply start IDL
from the directory where the *.out IDL plot files and the *.log logfiles are, e.g.

cd run/IO2

idl

If IDL STARTUP is not set, type

@idlrc

3

at the IDL> prompt, so that the commands in the idlrc file are executed: the
procedures in procedures.pro, funcdef.pro and vector.pro are compiled and
the script set defaults is executed to set some common block variables to their
default values. You can customize the startup of IDL by editing idlrc, e.g. you
can compile your own IDL procedures.

If an error occurs, the code usually returns to the main level, so one can fix
the settings and try again. The corresponds to the default setting

onerror=2

For debugging purposes, it may be useful to set

onerror=0

so that variables can be written out inside the macro where the error occurred.
In this case, or in general if you get trapped by an error inside some IDL routine,
typing

retall

will return to the main level. To exit IDL type

exit

The alternative ’quit’ command is also defined for convenience.

4 Reading a snapshot with read data

To read a snapshot from a file, type at the ”IDL>” prompt of IDL

read_data

The procedure will prompt you for the filename, and it determines the file-
types and npictinfiles (the number of snapshots in the file) automatically.
Then it asks for the frame-number npict (1, 2,... npictinfiles) of the snapshot
to be read from the file. When npictinfiles=1, the frame number is set to 1
automatically:

filename(s) ? example1.out

filetype(s) = binary

npictinfile(s)= 1

npict= 1

The header of the file is read and echoed on the screen. A typical result:

filename = cut.outs

filetype = ascii

headline = km Mp/cc km/s km/s km/s nT nT nT nPa

it = 77

time = 60.360603

4

gencoord = 0

ndim = 1

neqpar = 5

nw = 8

nx = 256

parameters = 1000. 3. 1.66667 0. 0.

coord names= x

var names= Rho Ux Uy Uz Bx By Bz P

param names= xSI r g cuty cutz

Read x and w

GRID (PLOT_DATA)

LONG = Array[256]

At the end, the x and w variables (containing the coordinates and the plot
variables respectively) are read from the file. Note that IDL, unlike FORTRAN,
starts indexing from 0 instead of 1. The GRID index array is useful for defining
cuts of the computational domain for plotting, see details in section 11.

After reading the data you can do whatever you want with x, w, and all
the other variables headline, it, time, gencoord, ndim, neqpar, nw, nx,
eqpar, variables defined by the header. You can use the plot data procedure
(see section 8 to get some sophisticated plots or you can use any of the IDL
procedures directly to examine and/or plot the data, e.g. for 1D data

print,time,it

print,nx

print,variables

plot,x,w(*,0),xtitle=’X [km]’,ytitle=’Density’

while for unstructured 2D data, for example, use

contour,w(*,*,2),x(*,*,0),x(*,*,1),/fill,nlevel=30,/irr

oplot,x(*,*,0),x(*,*,1),psym=1,color=0

The first command produces a color plot of the 3rd variable (index 2). The
second command will show the grid points. Another way to plot the grid points
is to use the plotgrid procedure as

plotgrid,x

For structured 2D grid, you can plot the grid lines connecting the grid points
with

plotgrid,x,/lines

5 Transformation of non-regular grid

The file may contain data on a generalized or unstructured 2D grid. This is
signaled by a negative ndim in the plotfile and by the variable gencoord=1

5

in IDL. A generalized grid has the same topology as a regular grid but the
coordinates are not Cartesian. It is a continuouus distortion of the original grid.
On the other hand, an unstructured grid has the grid points in an arbitrary
order, therefore the second and third elements of the nx array are 1. The AMR
grids of BATS-R-US and AMRVAC are unstructured, while VAC can produce
generalized grids.

The default behavior is to leave the grid in its original form. This choice
saves the time of transformation, and uses the original grid and variables, but
only some of the plotting modes are available for generalized and unstructured
grids: contour, contfill, contlabel, contbar, vector and stream. Others (e.g.
surface, tv, tvbar, velovect) are not. To allow all plotting modes (and cuts
across the grid), the data has to be transformed (interpolated) onto a regular
grid. To achieve that select the ’regular’ transformation with

transform (r=regular/p=polar/u=unpolar/n=none)=none ? r

The size of the regular grid can be given by setting the nxreg array

nxreg=[100,100]

If nxreg is not set, then the size of the regular grid will be asked when the data
is read with read data or animate data:

Generalized coordinates, dimensions for regular grid

nxreg(0) (use negative sign to limit x)= 100

nxreg(1) (use negative sign to limit y)= 100

With these settings the original w array is interpolated to a 100 × 100 wreg
array and the coordinates for the regular grid xreg are also determined. You
can plot the first variable, usually density, in wreg the same way as before

surface,wreg(*,*,0)

It is possible to restrict the transformation to a rectangular part of the original
2D data by setting the xreglimits array

xreglimits=[-15, -10, 30.5, 10]

Note that the order of the elements is xmin, ymin, xmax, ymax. Another way
to do this is adding a negative sign when prompted for nxreg(0) and nxreg(1),
e.g.

nxreg(0) (use negative sign to limit x)? -100

xreglimits(0) (xmin)? -15.

xreglimits(2) (xmax)? 30.5

nxreg(1) (use negative sign to limit y)? -50

xreglimits(1) (ymin)? -10.

xreglimits(3) (ymax)? 10.

Now the 100 × 50 xreg array is limited to the range [-15.,30.5] in x, and [-
10.,10.] in y, and this is where the wreg array is defined. To return to the
default behaviour, which is plotting the whole computational domain, set

6

xreglimits=0

If the transformation or the transformation parameters are changed, the read data
or animate data procedures, which read data from the disk, will calculate
wreg with the new tranformation settings as expected. The plot data pro-
cedure does not do the transformation by default to speed things up. If the
transformation parameters are changed set

dotransform=’y’

to force plot data to redo the transformation as necessary. After that you can
return to dotransform=’n’ to save the time of transformation.

6 Other grid transformations

The transform parameter can be used to perform various grid transformations
by setting it to one of the following values

n, none - no tranformation

r, regular - interpolate onto a regular Cartesian grid (previous section)

p, polar - convert from Cartesian X-Y(-Z) to polar R-Phi(-Z) coordinates

u, unpolar - convert from polar R-Phi(-Z) to Cartesian X-Y(-Z) coordinates

s, sphere - convert from Cartesian X-Y-Z to spherical R-Theta-Phi coordinates

m, my - perform the transformation in the {\bf do_my_transform} procedure

The polar, unpolar, sphere options are standard geometric transformations
of the coordinates x and the vector variables inw to xreg andwreg. The angles
have to be in radians. The number of vector variables is read into nvector and
the indexes of the first components of these vector variables are read into the
vectors array.

The transform=’my’ option allows to define an arbitrary grid/data trans-
formation that has to be implemented into a do my transform.pro procedure
that needs to be compiled as

.r do_my_transform

The following simple example converts the second and third coordinates of 3D
data from radians to degrees:

do_my_transform,ifile,variables,x,w,xreg,wreg,usereg

if max(x(*,*,*,1:2)) lt 10.0 then $

x(*,*,*,1:2) = x(*,*,*,1:2)*180/!pi

end

The if statement prevents accidental multiple transformations by plot data or
converting coordinates of a file that uses degrees to start with. As the number
of arguments indicate, this feature can be used for much more complicated
transformations too.

7

7 Comparison of data

You can read snapshots from up to 10 files for purposes of comparison. Simply
give the filenames separated by spaces:

set_default_values

read_data

filename(s) ? example1.out example2.out

filetype(s) = real4 real4

npictinfile(s)= 21 10

npict? 2

This will read the second snapshots from ’example1.out’ and ’example2.out’.
You may also use wild card characters

* ? []

that are recognized by the Unix ’ls’ command, e.g.

IDL> filename=’example[12].out’

IDL> filename=’example?.out’

IDL> filename=’exampl*.out’

Note that if any wild card character is used then the order of the files will be
alphabetical. To read different snapshots from different files, use the firstpict
array:

filename=’RESULTS/run[12]*/GM/z=0*.outs’

firstpict=[2,5]

read_data

After reading the files with read data, the coordinates and the conservative
variables will be put into x0, x1 and w0, w1 respectively, however, the header
information, which is printed for each file onto the screen, will be overwritten
by the last file read, in this case it will belong to example2.out. The generic
x, w arrays will also be filled by the data read from the last file, and this
is what plot data plots. If the files contained data on non-regular grid, and
transform=’regular’ is set, the data will be interpolated into the arrays wreg0
and wreg1. To compare the two data sets run

IDL> compare,w0,w1

iw max(|w1-w2|)/max(|w1|+|w2|) sum(|w1-w2|)/sum(|w1|+|w2|)

0 0.018272938 0.00017745799

1 0.24608387 0.017349624

2 0.14307581 0.016188008

3 wsum=0

4 0.022624079 0.00022667312

5 0.014965503 0.00022646554

6 0.018034518 0.00020733169

7 wsum=0

8

or add the wnames array (an optional argument) to get

IDL> compare,w0,w1,wnames

iw max(|w1-w2|)/max(|w1|+|w2|) sum(|w1-w2|)/sum(|w1|+|w2|)

rho 0.018272938 0.00017745799

mx 0.24608387 0.017349624

my 0.14307581 0.016188008

mz wsum=0

e 0.022624079 0.00022667312

bx 0.014965503 0.00022646554

by 0.018034518 0.00020733169

bz wsum=0

The comparison shows the maximum difference divided by the sum of maximum
absolute values and the sum of absolute differences divided by the sum of abso-
lute values for each variable in w0 and w1. If a variable is zero everywhere both
in w0 and w1, the wsum=0 message is shown. You can compare arbitrary
1, 2, 3 and 4 dimensional arrays as long as they have the same size. The last
dimension is interpreted as the variable index iw. E.g. you could compare two
cuts of wreg with

compare,wreg(0:20,2,*),wreg(0:20,3,*)}

or you can check if the data read from two files have the same grid

compare,x0,x1

If the two files have different resolutions, the coarsen function can be used. For
example, if two solutions were obtained on 100 x 50 and 300 x 150 grids, then

rholow =w0(*,*,0)

rhohigh=coarsen(w1(*,*,0), 3)

print,total(abs(rholow-rhohigh))/100/50

will give the average deviation in density. The coarsening is done in finite volume
sense, i.e. the fine cells within the coarsened cell are averaged out. The coarsen
function works properly for uniform Cartesian grids only. Pointwise values can
be compared with the use of the triplet and quadruplet functions (see section
11).

One can also visualize the difference between two data files with the plot data
procedure (see next section) by setting

w=w1-w0

if the two files use the same grid, or

wreg=wreg1-wreg0

if the files use different unstructured grids but they are interpolated onto the
same regular grid.

9

8 Plotting data with plot data and show data

Once the data is read by read data or animate data you can plot functions
of w with

plot_data

Alternatively, you can use

show_data

to read (or re-read) the file and plot it immediately. In both cases you will see
some plotting parameters with their current values:

======= CURRENT PLOTTING PARAMETERS ================

ax,az= 30, 30, contourlevel= 30, velvector= 200, velspeed (0..5)= 5

multiplot= 0 (default), axistype (coord/cells)=coord, fixaspect=1

bottomline=3, headerline=0

The plots are normally shown in physical coordinates, i.e. axistype=’coord’,
but the axes can also run in cell indices if axistype=’cells’ is set (that works
for structured grid only!). If fixaspect=1 or -1 the aspect ratio of the plot
will be the same as the true aspect ratio of the two axes, while fixaspect=0
allows the aspect ratio to adjust so that the plot fits into the plotting window
tightly. The fixaspect=-1 setting preserves the aspect ratio but it allows ad-
justing the spacing between rows and columns of subplots independent of the
shape of the plotting window (this can result in large margins). The variables
bottomline and headerline control the number of values shown at the bot-
tom from time, it, nx and at the top from headline, nx. You can change
these values explicitly (e.g. bottomline=0), or change their default values in
procedure set default values in procedures.pro. See sections 10 and 11 for
more detail.

Now, you will be prompted for the name of function(s) and the corresponding
plotting mode(s):

======= PLOTTING PARAMETERS =========================

wnames = rho ux uy uz p bx by bz

func(s) (e.g. rho p m1;m2) ? rho uy

2D scalar: shade/surface/contour/contlabel/contfill/contbar/tv/tvbar

2D polar : polar/polarlabel/polarfill/polarbar

2D vector: stream/stream2/vector/velovect/ovelovect

plotmode(s) ? default

plottitle(s) (e.g. B [G];J)=default

autorange(s) (y/n) =y

GRID INT = Array(50, 50)

The function(s) to be plotted are determined by the func string parameter,
which is a list of function names separated by spaces. The number of functions
nfunc is thus determined by the number of function names listed in func.

10

For each function you may set the plotting mode with the plotmode string.
If you give fewer plotting mode(s) than nfunc, the rest of the functions will use
the last plotting mode given, in the above example default, which is ’contbar’
for scalars and ’streamover’ for vector valued functions. This padding rule is
used for all the arrays described by strings. See section 10 for more details on
plotting modes.

The plottitle parameter is usually set to ’default’ which means that the
function name is used for the title, but you can set it explicitly, e.g. plotti-
tle=’Density;Momentum’. Here the separator character is a semicolon, thus
the titles may contain spaces. No titles are produced if plottitle=’ ’ is set.

For each function you may set the plotting range by hand or let IDL calculate
the minimum and maximum by itself. This is defined by the autorange string
parameter, which is a list of ’y’ and ’n’ characters, each referring to the respective
function. If you set ’n’ for any of the variables, the fmin and fmax arrays have
to be set, e.g.

fmin=[1. ,-1.]

fmax=[1.1, 1.]

IDL remembers the previous setting and uses it, unless the number of functions
are changed. You can always set fmin=0, fmax=0, and let IDL prompt you for
the values.

9 Function names in string func

The function names listed in the func string can be any of the variable names
listed in the string array wnames, which is read from the header of the file,
or any of the function name strings shown in the functiondef array at the
beginning of funcdef.pro (see section 16), or any expression using the standard
variable, coordinate and scalar parameter names and various constants:

x y z r

rho p ux uy uz uu u bx by bz bb b

xSI gamma gammae Mi Me Qi Qe clight rbody

mu0 mu0A c0 op0 oc0 rg0 di0 ld0

Here ”uu” and ”bb” are the velocity and magnetic field squared, while ”u”
and ”b” are the velocity and magnetic field magnitudes, respectively. Note
that ”x ... b” are arrays, while ”gamma” is a scalar. For example the maximum
Alfvén speed could be given as func=’b/sqrt(rho*mu0A)’, but this is already
defined in funcdef.pro as ’calfven’. However, for a multifluid data file, one can
use a different density, e.g.

func=’b/sqrt({OpRho}*mu0A)’

where mu0A is the vacuum permeability together with the unit conversion fac-
tors. Note that the OpRho variable (density of O+ ion) is not among the
standard arrays, but it can still be used by enclosing it with the curly brackets.

11

You may combine two function names with the ; character representing two
components of a vector, e.g. ux;uy or bx;bz, which can either be plotted as a
vectorfield by the velovect, vector and arrow plot modes, or as streamlines
or fieldlines, using the stream plotting modes. For other plotting modes the
absolute value

√
ux2 + uy2 is plotted. You can also put a minus sign in front of

any function or variable name, which will simply multiply the value of the rest
of the string by −1. For example ’-Ti’ plots (−1)*temperature of ions. This is
just a shorthand for the general syntax ’-Ti’.

10 Plotting modes in string plotmode

There are many plotting modes available. These can be listed in the plotmode
string for each function separated by spaces. If the number of plotting modes is
less than the number of functions, the last plotting mode is applied for the rest
of the functions.

For 1D plots the following plotting modes are available:

Plotmode Horizontal axis Vertical axis

plot linear linear

plot_io linear logarithmic

plot_oi logarithmic linear

plot_oo logarithmic logarithmic

The default value for plotmode is ’plot’, which uses linear axes. The names of
these plotting modes are identical with the corresponding IDL procedures.

For 2D data there are many more possibilities. For scalar functions the main
plotting modes are

Plotmode Parameters Description

--

contour contourlevel/colorlevel contourlines

cont contourlevel/colorlevel contourlines or color map

lonlatn contourlevel/colorlevel lon-lat grid for north polar cap

lonlatd contourlevel/colorlevel lon-lat grid for south polar cap

polar contourlevel/colorlevel polar plot

scatter scatter plot

shade ax az shaded surface, height proportional to value

surface ax az surface mesh, height proportional to value

tv grid cells colored by value

The parameters ax and az define the viewing angle, while the contourlevel
and contourlevel parameters determines the number of contourlevel and col-
ors, respectively. The ’tv’,’surface’ and ’shade’ plotting modes can be used for
Cartesian grids only (or grids transformed to Cartesian).

For functions with two components (e.g. ’bx;bz’) the following plotting
modes are available

12

Plotmode Parameters Description

stream velvector stream/fieldlines at random/selected points

velpos

velrandom

arrow velvector arrows of fixed length at random/selected positions

velpos

velrandom

vector velvector vectors at random/selected positions

velpos

velspeed

velrandom

velovect vectors at every grid point

ovelovect vectors at every grid point (for overplot)

The velvector parameter determines the number of arrows or stream/fieldlines
shown. By default the position of arrows/streamlines is random. The posi-
tions can be fixed with the velpos array (see section 11 for details). During
an animation the arrows can move from their initial position parallel to the
local velocity at a speed proportional to the magnitude of the velocity and the
velspeed parameter. The maximum value is the default velspeed=5, while
velspeed=0 does not allow the arrows to move. When the arrows move, it may
be necessary to reinitialize them with a random position periodically, otherwise
the arrows may converge to a small part of the domain. Setting velrandom to
a small positive integer value (e.g. 5) will reinitialize the position of every 5th
vector every 5 picture of the animation.

The ’velovect’ and ’ovelovect’ plotting modes can be used for Cartesian grids
only.

The following options can be added to any of the above plotting modes:

Option Description

log show the 10 based logarithm of the function if it is positive

over overplot the previous function

noaxis do not show the axes

#ctNNN use color table NNN (NNN is an integer from 0 to 999)

#cNNN use color NNN (NNN is an integer from 0 to 255)

max plot maximum of the last "nplotstore" snapshots

mean plot average of the last "nplotstore" snapshots

For 1D plots:

Option Description

13

dash dashed line style

dot dotted line style

time vertical dashed line at current time (for log/sat files)

For 2D plots:

Option Description

bar fill contour plot and show colorbar (also for "tv")

fill fill contour plot without colorbar

label contour plot with labels

deg angle in degrees for plolar plots

rad angle in radians for polar plots

hour angle in hour for polar plots

lgx logarithmic X axis

lgy logarithmic Y axis

body show the spherical body with radius rBody as a black circle

grid show grid points with plus signs

mesh show the mesh (lines connecting grid points) for structured grid

map draw a world map under the plot

usa draw the USA map under the plot

irr force triangulation for irregular (non-Cartesian) grid

white draw vectors, stream lines and the grid/mesh with white lines

Note that it makes no sense to overplot the grid for the surface plotting mode,
on the other hand plotmode=’shademesh’ will plot the shaded surface together
with the mesh of ’surface’. The radius of the body rBody is usueally read
from the scalar parameter named ’r’ or ’rbody’ in the data file, or it can be set
manually.

Here is an example for some more complex plotmode strings:

plotmode=’contbargridlog streamwhiteoverbody’

will show the 10 based logarithm of the first scalar quantity with a color bar and
the grid points, and overplot the second vector quantity with white streamlines
and a black body at the origin.

For any of the colored plotting modes (’shade’, ’contfill’, ’contbar’, ’polarfill’,
’polarbar’, ’tv’, and ’tvbar’) the colortable can be changed by one of the

xloadct

loadct,3

loadct_bw,70,/reverse

makect,’red’

commands. The xloadct and loadct commands are part of IDL, while the
loadct bw and makect procedure is defined in procedures.pro. The loadct bw

takes the same arguments as loadct, but it ensures that the first and last colors

14

are black/white depending on the background. The /reverse argument swaps
the order of colors. When no argument is given for loadct or makect, all the
available color tables are listed and the choice can be made interactively. If
multiple color tables are needed, they can be loaded with the #ctNNN option.
The color can be set with the #cNNN option.

Many characteristics of the plots can be adjusted with system variables.
Here is a partial list of these:

system variable description

!p.charsize overall character size

!p.psym symbols instead of lines in 1D plot

!p.symsize symbol size

!p.thick thickness of lines in plots

!p.linestyle line style in plots (0=solid, 1=dotted, 2=dashed...)

!x.title title of the X axis

!x.charsize X axis character size

!x.thick thickness of the lines forming the X axis

!x.ticks number of X axis tick marks

!x.tickv positions of X axis tick marks

!x.tickname strings at X axis tick marks

!x.minor number of minor tickmarks

The Y and Z axes are affected by the analogous !y. and !z. variables.

11 Plotting part of the domain

It is possible to plot a part of the simulation domain. One way that works for
both structured and unstructured grids is to set the global system variables

!x.range=[-10.,10.]

!y.range=[-20.,-5.]

This will work well for ’flat’ plotting modes, like ’contour’, ’contfill’, etc. For
unstructured grids which are not transformed to a regular grid, it works for all
the available plotting modes. To switch back to the default maximum range,
use

!x.range=0

!y.range=0

When the data is transfored to a regular grids, the domain of transformation
can be limited by the xreglimits array as described in section 5.

For structured grids, there is a further option of limiting or coarsening the
plot domain, and/or reducing the dimensionality of the plot. The cut index
array selects some part of the function(s) determined by func. This is done
after any grid transformation and after the functions are calculated so that

15

derivatives can be properly taken by the funcdef function. The grid index
array is defined to help to construct the cut array, e.g. if the grid size is 100
times 100:

cut=grid(*,50:*)

plot_data

will show the upper half of the domain. To eliminate the edges use

cut=grid(1:98,1:98)

A cross section of the domain can be plotted by reducing the number of dimen-
sions of cut relative to grid:

cut=grid(*,50)

will produce 1D plots of the cross section along the midline parallel to the first
coordinate axis. For a 2D cut of 3D data, use for example

cut=grid(*,50,*)

The effect of the cut array can be switched off by

cut=0

or by running set default values.
The triplet function provides an easy way to set the cut index array to

represent a coarser grid. This is particularly useful for the velovect plotting
mode, which tends to draw too many tiny arrows. The triplet function can
have 3, 6, 9, or 12 parameters depending on the number of dimensions, and
each triplet describes a subset of the indices in the given direction. The three
elements are the minimum, maximum, and stride (like in Fortran 90), e.g.

filename=’example2.out’

npict=10

read_data

func=’ux;uy’

plotmode=’velovect’

cut=triplet(0,49,2, 33,66,1)

plot_data

will show every second cell in the x direction and the middle third in the y
direction. Note that the maximum index value should be the actual grid size−1
except for the last dimension, otherwise the indices will not be correct. This
problem can be solved by the use of the quadruplet function, which has four
parameters per dimension: size, minimum, maximum, and stride. To show a
coarse 20∗20 grid from the top left 40∗40 part of the 50∗50 grid use

cut=quadruplet(50,0,39,2, 50,10,49,2)

plot_data

16

Another way to show velocity vectors at fixed positions is the use of the ”vector”
plotting mode after setting the number of vectors velvector and the array of
positions velpos(velvector,2) containing the X and Y coordinates for each
vector. In principle velpos can be defined as an arbitrary set of points. For a
simple coarsening of the original grid points, the triplet and quadruplet functions
can be used again:

cut=grid(0:39,10:49)

velvector=20*13 & velpos=fltarr(velvector,2)

velpos(*,*)=x(quadruplet(50,1,39,2, 50,11,49,3, 2,0,1,1))

plot_data

cut=0

plotmode=’vector’

velvector=25*25 & velpos=fltarr(velvector,2)

velpos(*,*)=x(triplet(0,49,2, 0,49,2, 0,1,1))

plot_data

Note that the last 0,1,1 triplet and 2,0,1,1 quadruplet correspond to the second
dimension of velpos that always runs from 0 (X coordinate) to 1 (Y coordinate).
This approach is very useful when the velocity vectors are shown together with
plots of other functions that should not be coarsened. To use random positions
again, set velpos=0. The velpos array can also be used to position streamlines
for plotmode=’stream’ and ’stream2’.

Finally the rcut parameter can be used to cut out a circle around the origin.
While the body modifier in the plotting mode simply covers the circle, the rcut
removes all the data inside that radius, so it has an effect on the range of values.

12 Multiplot

The number and arrangement of subplots is automatically set based on the
number of files and and the number of functions. The default arrangement be
can overriden by setting the multiplot array. The most complicated use has 4
elements

multiplot=[2,3,0,2]

gives 2 by 3 subplots filled in row-wise (3rd element is 0) starting with the 3rd
subplot (4th element is 2). If the third element is 1, the subplots are filled in
column-wise. If the 4th element is not given

multiplot=[2,3,0]

the plotting starts at the top left subplot, as usual. Even simpler cases are
handled by setting multiplot to a scalar value. Setting multiplot=3 is identical
with multiplot=[3,1,0] (a single row of plots), multiplot=-3 is identical with
multiplot=[1,3,1] (a single column of plots), multiplot=-1 is a column of

17

subplots based on the number functions and files, while multiplot=0 gives the
default behaviour (the number of rows and columns is about the same and filled
in row-wise).

The spacing between subplots can be adjusted with the plot spacex and
plot spacey variables. The spacing is measured in character size (which de-
pends on !p.charsize). The default values are 3 for both, which is usually suffi-
cient to show the axis labels. Setting both to zero (and also fixaspect=0 or -1)
can result in tigthly packed plots.

To save space, the axis labels and axis titles are normally only shown for
the subplots are at the leftmost column or the bottom row. Setting (some of)
the showxtitle, showytitle, showxaxis, showyaxis parameters to 1 can be
used to force the X and/or Y axes and their title plotted for all subplots.

Functions can be plot on top of each other by setting the multiplot array
such that the number of subplots is smaller than the number of functions times
the number of files.

To overplot functions, the most convenient approach is to use the ’over’
option in the plotmode string, for example

func=’rho bx;by’

plotmode=’contbar streamover’

plottitle=’rho;B’

plot_data

func=’p ux;uy’

plottitle=’p;U’

plotmode=’contfill arrowover’

plot_data

The number of functions and the number of subplots can be any combination.
In 1D plots, the line style is varied for the different functions, so the curves can
be distinguished.

13 Plotting another snapshot

If you type

show_data

the data will be read and plotted again without any questions asked, since IDL
remembers the previous settings.

If you want to read another frame, say the second, from the same file, type

npict=2

read_data

You can change the func and plotmode variables the same way:

func=’rho p’

plotmode=’contour surface’

plot_data

18

Note that we did not need to reread the data. Other variables, all listed in the
common blocks at the beginning of the procedues.pro file, can be set similarly.
If you set

doask=1

the macros will ask for all the parameters to be confirmed by a simple RETURN,
or to be changed by typing a new value. Set doask=0 to get the default
behaviour, which is no confirmation asked. To overplot previous plots without
erasing the screen, set

noerase=1

You can return to the default settings for all parameters by calling the

set_default_values

procedure.

14 Animation and plotting with animate data

This general procedure can plot, save into image and video file(s), or animate
(using IDL’s Xinteranimate) different functions of data read from one or more
files. If a single snapshot is read, the plot is drawn without animation. In
essence, animate data combines read data and plot data for any number of
files and any number of snapshots.

animate_data

will first prompt you for filename(s) unless already given. Animating more
than one input files in parallel is most useful for comparing simulations with
the same or very similar physics using different methods or grid resolution.
It is a good idea to save snapshots at the same physical time into the data
files. By default (if multiplot=0), the functions corresponding to the files will
be plot columnwise with the leftmost column belonging to the first file. The
headlines and the grid sizes will be shown in for each file separately above the
corresponding columns if headerline=2 is set.

The function(s) to be animated and the plotting mode(s) for the functions
are determined by the same func, plotmode, and plottitle strings as for
plot data. To plot different functions, plot modes, and/or plot titles per file,
set the func file, plotmode file and/or plottitle file string arrays with as
many elements as the number of files. If any part of the autorange string is set
to ’y’, the data file(s) will be read twice: first for setting the common range(s)
for all the snapshots and the second time for plotting. If autorange=’n’ the
file(s) will only be read once. Here is an example showing two cuts of a 3D
simulation together:

19

filename=’y=0.outs z=0.outs’

plottitle_file=[’Density and velocity in y=0 plane’, ’Density and U in z=0 plane’]

func_file=[’rho ux;uz’, ’rho ux;uy’]

plotmode_file=[’contfill streamover’, ’contbar streamover’]

showxtitle=1

showytitle=1

animate_data

The showxtitle and showytitle logicals control if the axis labels are shown
for each subplot or not. The default is to show the X axis for the bottom row
only and the Y axis for the left column only. When the axes vary from file to
file, it is best to show the axis labels for each subplot.

The number of snapshots to be animated is limited by the end of file(s)
and/or by the npictmax parameter. With a formula

npict=min(npictmax, min(1 + (npictinfiles-firstpict)/dpict))

The animation runs from firstpict, every dpict-th picture is plotted and the
total number of animated frames is at most npictmax. If firstpict and dpict
are scalars, the same values are applied for all the files, but it is also possible to
use different values for each file by setting array values, e.g. for two files

firstpict=[5,9]

dpict =[1,2]

will plot every frame starting from the 5th in the first file, and every second
frame from the 9th in the second file.

The multiplot array can be used to get some really interesting effects in
animate data: the data from multiple files can be overplotted for comparison
purposes. Probably it is a good idea to compare 1D slices rather than full 2D
plots, e.g.

filename=’example[12].out’

func=’rho ux’

cut=grid(*,25)

multiplot=2

animate_data

will overplot density and velocity read from the two files. The lines belonging
to the two data files are distinguished by the different line styles. For a 2D
comparison, one could use

filename=’example[12].out’

func=’rho ux’

plotmode_file=[’contfill’, ’contour’]

multiplot=2

animate_data

Timeseries can also be produced easily with multiplot.

20

filename=’example2.out’

func=’rho ux;uy’

plotmode=’contfill vectorover’

npictmax=6

multiplot=[3,2,0]

bottomline=1

animate_data

will show the first 6 snapshots of density with overplot velocity vectors in a
single plot. Now the time is shown for each plot individually, and setting bot-
tomline=1 limits the time stamp to the most essential information, time. The
bottomline=2 shows the iteration number and the time, while bottomline=3
also shows the grid size. This information can be customized by setting bot-
tomline to a string valued expression, e.g.

bottomline=’"Time="+stime+", Grid="+snx+", Iteration="+sit’

where stime, snx, sit are formatted strings of time, iteration number and
grid size. An even more complicated example is to use expressions and string
formatting explicitly, e.g.

bottomline=’"Time="+string(time*1e9,format="(f5.1)")+" ns"’

that will show time in units of nanoseconds.
An alternative approach (that works with animate data only) is to set the

timetitle string to format the time and show it as the plot title. For example

timetitle=’("t=",f8.1,"s")’

will show the time as t=240000.0s. The time units and the initial time (offset)
can be set with timetitleunit and timetitlestart. For example

timetitleunit=3600.0

timetitlestart=60.0

timetitle=’(‘‘t=’’,f5.2,’’h’’)’

will show the time as t= 6.67h. Note that timetitleunit is relative to the time
units used in the data file (e.g. seconds) while the offset is given in the time
units defined by timetitleunit.

Set timetitle to an empty string and/or timetitleunit and timetitlestart to
zero to return to the default behavior. If npict*nfile*nplot is greater than the
number of subplots defined by multiplot, an animation is done. Type

multiplot=0

to return to default behavior, which is one snapshot per plot.
Even after exiting from Xinteranimate, the animation can be repeated again

without rereading the data file(s) by typing

xinteranimate,/keep_pixmaps

21

Sometimes it is interesting to visualize the difference of two runs, e.g. to visualize
deviations from the initial state, or from a steady state. This can be achieved
by setting the wsubtract array, which will be subtracted from w for each
snapshot. Note that the subtraction is done for the original variables in w, so
derived quantities should not be plotted. Set wsubtract=0 to switch off the
subtraction.

The timediff=1 setting can be used to calculate the time derivative by
subtracting the previous plot data stored as wprev from the current one and
dividing by the elapsed time time-timeprev. Again, derived quantities may
not be meaningful. Set timediff=0 to switch off this feature.

The pictdiff=1 setting is similar to timediff=1, but there is no division by
the time difference. This can be useful for looking at the changes in a “steady
state” run. Set pictdiff=0 to switch off this feature.

Note that the wsubtract and timediff features are only used by ”ani-
mate data”, since a single snapshot can be easily manipulated explicitly, e.g.
w=w1-w0, before plotting with plot data.

Even more access to the animated data is provided by the variables found in
the plot store common block. Setting nplotstore to the number of snapshots
to be stored, for example

nplotstore = npictmax

animate_data

help, plotstore, timestore

will produce the four dimensional plotstore(n,nplotstore,nfunc,nfile) array.
The first index is for the discrete points in the plotted functions in the same
order as in the w or wreg array. The second index is for the snapshot (time),
the third is for the plot function (for multiple functions), and the last is the
file index (for multiple files). The times of the snapshots are saved into the
timestore(nplotstore,nfilestore) array.

Note that if the plot mode contain ‘max’ or ’mean’ option, the maximum
or mean will be calculated for the last nplotstore snapshots, but the plotstore
array will still contain the original function values.

15 Slicing structured 3D data

For visualizing 3D data, plot data or animate data can be used after a 1 or 2D
cut array has been defined. Alternatively slices of a single snapshot (read by
read data) can be animated by

slice_data

The 3D data is cut along slicedir, e.g. for cuts parallel to the X-Y plane, set

slicedir (1, 2, or 3)? 3

If the grid size is e.g. 50∗100∗60, then there are 60 slices to plot. The number
of animated slices can be reduced: at most nslicemax slices are shown starting

22

from firstslice, and only every dslice-th slice is shown. The plots can be further
reduced by setting the cut array, however, now indices in cut refer to a single
slice. The grid2d index array (generated by the first slice data, in this case it
is a 50∗100 array) can be used, e.g.

cut=grid2d(*,30:70)

For plotmode=’vector’ the vectors are not advected with the flow (i.e. vel-
speed=0) since it does not make sense for the slices.

The x and w arrays are overwritten with the 2D cuts during the slicing, and
only restored to the 3D arrays at the end. If the slicing failed for any reason,
use

slice_data_restore

to restore the arrays.

16 Function definitions in funcdef

The plot functions are set by the funcdef.pro procedure. This may be cus-
tomized by the user. If it is modified, it should be recompiled before being
used:

.r funcdef

Any function of the variables in w, the coordinates in x, the scalar parameters
in eqpar can be defined in the funcdef.pro file. The names of these variables
are defined by the variables string array. Further information is provided by
various unit conversion constants set by the set units procedure that is usually
called internally when the data file is read, but it can also be called directly, for
example:

set_units,’PIC’,distunit=0.01,Mion=16,Melectron=0.16

fixunits=1

where the first argument sets the unit system (’SI’, ’CGS’, ’NORMALIZED’,
’PIC’, ’PLANETARY’, or ’SOLAR’) which is normally guessed from the head-
erline variable of the data file; the distance unit is given in meters (usually set
by the xSI scalar parameter in the data file); finally Mion and Melectron set the
ion and electron masses in AMU that may be defined by the Mi and Me scalar
parameters. All these arguments are optional. The fixunits=1 ensures that
the settings are not changed when (re)reading a data file.

Once the units are properly set, many functions can be derived from the
basic variables. Here is a list of the currently defined functions (for vectors,
only the X components are listed for sake of brevity):

Function name Meaning

--

23

Ax vector potential X component

mx momentum X component

mxB Boris momentum X component

Ex electric field X component -(u x B)_x

j current density (from jx, jy, jz)

jpx particle current density X component

jppar particle current density parallel with B

jpperp particle current density perpendicular to B

jpxbx Lorentz force X component from particle current

divbxy div(B) in 2D

divb1xy div(B1) in 2D

uHx Hall velocity X component (jx/ne)

uH Hall velocity

uex electron velocity X component (ux-uHx)

ue electron velocity

e energy density p/(gamma-1)+0.5*(rho*uu + bb)

pbeta plasma beta: p/(B^2/(2*mu0))

s entropy: p/rho^gamma

ni ion number density

ne electron number density

qtot total charge density

Ti ion temperature: p/(n*k)

Te electonr temperature: pe/(n*k)

uth ion thermal speed

uthe electron thermal speed

csound sound speed: sqrt(gamma*p_thermal/rho)

cslowx slow magnetosonic speed along X dimension

calfvenx Alfven speed along X dimension: bx/sqrt(rho)

calfven maximum of Alfven speed: |B|/sqrt(rho)

cfastx fast magnetosonic speed along X dimension

cfast maximum of fast speed: sqrt(csound^2+calfven^2)

machx Mach number: ux/csound

mach Mach number: |u|/csound

Mslowx slow Mach number along X dimension: ux/cslowx

Malfvenx Alfven Mach number along X dim: ux/calfvenx

Malfven maximum Alfven Mach number: |u|/calfven

Mfastx fast Mach number along X dimension: ux/cfastx

Mfast maximum fast Mach number: |u|/cfast

omegapi ion plasma frequency

omegape electron plasma frequency

omegaci ion gyro frequency

omegace electron gyro frequency

rgyro gyro radius

rgSI gyro radius in SI

rgyroe electron gyro radius

rgeSI electron gyro radius in SI

24

dinertial inertial length

diSI ion inertial length in SI

skindepth electron skin depth

deSI electron skin depth in SI

ldebye Debye length

ldSI Debye length in SI

17 Reading logfiles with read log data

One or more (at most ten) logfiles can be read by

read_log_data

which reads data from the file(s) determined by the logfilename parameter.
This can be a space separated list of file names and/or it may include wild
card characters. The data in the logfile(s) is put into the wlog (wlog1, wlog2
...) real arrays, while the names of the variables are put into the wlognames
(wlognames1, wlognames2, ...) string arrays. If the logfile contains the
variable names ’t’ or ’time’, ’hour’ or ’hours’, ’yr mo dy hr mn sc ms’ or ’year
month day hour min sec msec’, then the time is calculated and stored in the
logtime (logtime1, logtime2, ...) 1D real arrays. The time unit is defined by
the timeunit string (possible values are ’h’, ’m’, ’s’, ’millisec’, ’microsec’,
’ns’); the default units are hours. If no time variables are found, the logtime
array is set to the row index.

After running read log data, the wlog(nrow,ncol) real array contains the
rows and columns of the logfile, the wlognames(ncol) string array the names
and the logtime(nrow) array the times. A simple example is

read_log_data

logfilename(s) =log_n020001.log

logfile =log_n020001.log

headline =Volume averages, fluxes, etc

wlog(*, 0)= it

wlog(*, 1)= t

wlog(*, 2)= dt

wlog(*, 3)= rho

wlog(*, 4)= mx

wlog(*, 5)= my

wlog(*, 6)= mz

wlog(*, 7)= p

wlog(*, 8)= bx

wlog(*, 9)= by

wlog(*,10)= bz

wlog(*,11)= pmin

wlog(*,12)= pmax

Number of recorded timesteps: nt= 1000

Setting logtime

25

You can use the IDL plotting procedures directly to visualize the data, e.g.

plot,logtime,wlog(*,3),xtitle=’hour’,ytitle=’rho_mean’

checks the global mass conservation.
The plot log data procedure described next can be used to get much more

sophisticated plots.

18 Plotting with plot log data or show log data

Once the data in the logfile(s) have been read with read log data, it can be
easily visualized with the plot log data procedure. Alternatively, use

show_log_data

to (re)read and plot the logfile data. The code will prompt for the names of
the log functions that is a space separated list of a subset of the strings in the
wlognames array:

plot_log_data

logfunc(s) ? mx pmin pmax

To change the list of functions simply change the logfunc string. The spacing
around the subplots (which are alway arranged vertically) can be set with the
log spacex and log spacey constants given in character size (default values
are 5 for both).

The time range of the plot can be set with the 2 element xrange array, while
the vertical plot range for the individual functions can be set by the 2 by nfunc
element yranges array. For example

xrange=[10,20]

yranges=[[-10,10],[0,0.1],[0,100]]

The default plot title, the X title (time) and the Y titles (log functions) can be
modified by setting the title and xtitle strings and the ytitles string array,
respectively. For example

title=’Simulation Results’

xtitle=’Hours from October 29, 2003’

ytitles=[’m!DX!N’,’P!Dmin!N’,’P!Dmax!N’]

To have no title at all, set these variables to empty strings. For the default
titles, set the variables to 0.

For multiple logfiles the plot log data procedure will overplot the data. By
default the lines belonging to the different data files are distinguished by color,
but it is possible to use different line styles or symbols by setting the linestyles
or symbols arrays. For example

26

colors=[255,255]

linestyles=[1,2]

symbols=[-4,-5]

will show a dotted and a dashed line with the same default color (usually white
or black) and with diamonds and trianlges at the data points, respectively.

The time coordinates can be shifted (towards the negative direction) by
setting the timeshifts array which should have nlogfile elements if set. Set
timeshifts=0 to get the default behavior.

It is possible to add legends to the plot by defining the legendpos array that
contains the xmin, xmax, ymin, ymax coordinates in normalized (0 to 1)
coordinates. The legends consist of horizontal lines and/or symbols extending
from xmin to xmax with the same colors, line types, and symbols as used for
the data. Each horizontal line/symbol is followed by a string that is either the
name of the corresponding logfile, or the corresponding element of the legends
string array consisting of nlog strings. For example

legendpos=[0.1,0.12,0.5,0.7]

will draw horizontal lines from 0.1 to 0.12 with vertical coordinates starting
from 0.7 all the way down to 0.5. For symbols it is better to use a single point,
e.g.:

legendpos=[0.11,0.11,0.5,0.7]

The horizontal lines or symbols will be foolowed by the file names by default.
Different legend strings can be given as

legends=[’run1 with no AMR’, $

’run2 with 1 level of AMR’, $

’run2 with 2 levels of AMR’]

The legends can be switched off with

legendpos=0

The data can be smoothed with the smooths array. The smoothing width can
be defined for each logfile separately. A value less than 2 means that the data
is not smoothed for that file. For example

smooths=[100,0]

will smooth the data from the first file only with a 100 point wide stencil.
Fourier transformation can also be performed by setting

dofft=1

In this case the horizontal axis will be the frequency, and the vertical axis will
be the power spectrum of the log functions defined in logfunc. The xrange
array can be used to select the relevant frequency range.

27

19 Reading and plotting logfile data with read data
and plot data

While the read log data and plot log data procedures provide easy and
flexible ways to plot data in logfiles, they do not allow to combine various
columns into new functions. One can work around this by reading the data
with read log data first, then manipulate the wlog array(s) directly, and then
plot the modified data with plot log data.

An alternative approach is to use the read data procedure to read the logfile
data into the x and w arrays:

read_data

filename(s) =*.log

filetype(s) = log

npictinfile(s)= 1

npict= 1

headline =Volume averages, fluxes, etc

ndim = 1, neqpar= 0, nw=13

it = 0, time= 0.00000

nx = 1182

eqpar = 0.00000

variables = hour it t dt rho mx my mz bx by bz e Pmin Pmax

Read x and w

GRID LONG = Array[1182]

The file type log is recognized from the filename extension which has to be
’.log’ or ’.sat’. After reading the logfile, the x array contains the logtime in
hours (currently the timeunit is not adjustable in this approach), while the w
array will contain the various log functions. Now the logfile data can be plot as
standard 1D data with plot data.

20 Saving plots into postscript and graphics files

In IDL printing a plot is possible through Postscript files using the set device
and close device procedures.

set_device,’myfile.eps’

loadct,3

plot_data

close_device

The first optional argument of the set device procedure is the filename. If it is
not given, the default filename ’idl.ps’ is used. There are several keyword argu-
ments too. Layout is set by /port for portrait, /land for landscape (this is the
default, but in some cases it is needed) and /square for a square shaped figure.

28

The xratio and yratio options can be used to shrink figure relative to the page
size (default values are 1). The /eps option selects encapsulated postscript for-
mat (which is also default if the file extension is .eps). The psfont=12 argument
can be used to select a specific font.

With no arguments, the close device procedure simply closes the postscript
device, and opens the ’X’ device. If the optional /pdf argument is present, the
output PostScript or EPS file is converted to PDF using either the default
ps2pdf program or the programname given as a value, e.g. pdf=’convert’. If
the /delete argument is present as well, the original PS or EPS file is removed.

You can use animate data instead of plot data (e.g. for multiple files or
for time series) in combination with set device and close device, but make
sure that only one plot is produced by setting npictmax=1, and use first-
pict to select the snapshot. Here is an example showing many of the optional
arguments:

npictmax=1

firstpict=12

set_device,’figure2.eps’, /port, xratio=0.8, psfont=8

animate_data

close_device,pdf=’convert’,/delete

This will produce a ’figure2.pdf’ in portrait format with Helvetica font, using
the convert program to convert to PDF.

To save all frames of an animation into a series of Postscript files, do not use
set device but set

savemovie=’ps’

This will produce files Movie/0001.ps,Movie/0002.ps,... in the Movie di-
rectory, which is created automatically if it does not exist. The PostScript files
are best suited for printing. You can also save the frames in PNG, TIFF, JPEG
or BMP formats, e.g. by setting

savemovie=’png’

The frames can be put together into a movie by some program likempeg encode
or ImageMagick’s convert, or Apple’s QuicktimePro7, but there is a simpler
approach. To save the animation into a video file directly, use the ’mov’, ’avi’
or ’mp4’ format. The name of the video file can be set with ’videofile’ (default
name is ’movie’) and the number of frames per second with ’videorate’ (default
is 10), for example

savemovie=’mp4’

videofile=’waterwaves’

videorate=24

animate_data

will create ’waterwaves.mp4’ file with 20 frames per second.
If you do not wish to use Xinteranimate, then set

29

showmovie=’n’

The default is ’y’, so Xinteranimate is used if there are multiple frames.

21 IDL scripts and procedures

All the IDL commands can be collected into a script file, for example

IDL_mine/myfig.pro

which can be run from IDL by

@myfig

This is a convenient way to store the commands for producing complicated
figures. An example can be found in EXAMPLE.pro. There are some restric-
tions on scripts, however. Loops and other multi-line structures cannot be used
in a script. If loops are needed, simply add an end statement to the end, and
call it as

.r myfig

For even more complicated cases a true procedure can be written. The common
variables can be imported through common blocks. This can be called as any
other procedure, for example

my_fig, inputfile=’test.out’, outputfile=’test.eps’

30

