
Testing Procedures for the Space Weather Modeling Framework

Gábor Tóth
Center for Space Environment Modeling

The University of Michigan

April 24, 2024

This code is a copyright protected software. (c) 2002- University of Michigan

1



2 CONTENTS

Contents

1 Description of the Testing Philosophy 3

2 Description of Unit Testing 3
2.1 Testing CON/Control with CON/Stubs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Testing CON/Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Testing CON/Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Testing CON/Coupler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Testing share/Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.6 Testing util/TIMING and util/NOMPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Description of Functionality Testing 5



3

1 Description of the Testing Philosophy

The Space Weather Modeling Framework (SWMF) is composed of the core of the framework and the various
components modeling the physics domains. Since the components are developed independently, it is neither
possible nor desirable to enforce a rigorous and comprehensive testing procedure for each component. As a
minimum, however, we require that new components are provided with at least one functionality test before
they can be integrated into the SWMF.

On the other hand we must ensure that the core of the SWMF and the key components developed at
the Center for Space Environment Modeling (CSEM) are well tested and reliable. We also established some
base-line testing for the whole framework involving all the components to verify that the SWMF works as
expected for a more or less typical space weather simulation run. This test can be run on different platforms,
and it serves as the portability testing for the SWMF.

In summary our testing philosophy follows a layered approach:

• The SWMF core: individual unit testing

• Key components: extensive functionality test suite

• New components: at least one functionality test

• The SWMF as a whole: comprehensive portability tests

The core of the SWMF is tested by unit testing, by the functionality test suite and also by the portability tests.
The key components are tested by the functionality test suite and the portability tests. New components are
tested by their functionality test and the portability tests. Finally all components and couplers are tested
by the portability tests.

2 Description of Unit Testing

The core of the SWMF consists of two layers:

• The super structure: CON/Control, CON/Interface, CON/Stubs

• The infra structure: CON/Library, CON/Coupler, share/, util/

The super structure, as the name suggests, can only be tested together with the components and the infra
structure. This complexity can be somewhat reduced if the components are replaced with stubs. The stub
components do not do any computation, they simply advance the simulation time and use up some CPU
time. The stub components are implemented in the CON/Stubs directory.

2.1 Testing CON/Control with CON/Stubs

The SWMF can be compiled with the stub components if the

INT_VERSION = Stubs

is selected in Makefile.def. All component versions can be set to ’Empty’. With this choice the core of the
SWMF can be tested without running the components. An example parameter file is provided in

Param/PARAM.in.test.stubs

To run the test, compile the SWMF with

./Config.pl -v=Empty

make -j SWMF INT_VERSION=Stubs



4 2 DESCRIPTION OF UNIT TESTING

then create the run directory and run the test:

make rundir

cd run

cp Param/PARAM.in.test.stubs PARAM.in

mpiexec -n 2 SWMF.exe

This test is intended for developers only, so the output is relatively complicated. Other than printing to the
screen, the test creates several files

cd run

ls STDOUT/*.log ??restart_*

The stub components can also be used to predict the parallel execution time for various layouts and control
parameters. An alternative approach is to use the Scripts/Performance.pl script.

2.2 Testing CON/Library

There is a test for the registration of components. The list and layout of registered components is described by
the #COMPONENTMAP command in the PARAM.in file. An example file is provided in CON/Library/src.
To test the reading of this file and the various functions provided by CON world, CON comp info and
CON comp param, run

cd CON/Library/src

make test NP=4 NTHREAD=2

This test is intended for developers only, so the output is relatively complicated. One can change the
PARAM.in file or the number of processors to do more extensive testing.

The other modules in this directory (CON time and CON physics) are relatively simple and they do not
have a unit tester. These modules are tested in the functionality and portability tests.

2.3 Testing CON/Interface

The CON/Interface directory contains the couplers between the components of the SWMF. These couplers
cannot be tested by themselves. The interfaces are tested by the portability tests (see section ??).

2.4 Testing CON/Coupler

The CON/Coupler directory contains the parallel coupling toolkit of the SWMF. This toolkit is used in
some of the component couplers. The unit tester for the coupling toolkit is CON test global message pass.
This module has been used in the past to test the SWMF coupling toolkit. To avoid various problems with
the compilers on the SGI Altix machines, the unit tester has been removed recently. The coupling toolkit is
tested by the portability tests (see section ??).

2.5 Testing share/Library

This library is used by the SWMF as well as the stand alone components. It is crucial to thoroughly test all
methods provided by this library. To run the unit tests

cd share/Library/test

make test

Although the output looks rather complex, it is mostly caused by the compiler messages and the verbose
information provided by the make program. To get a cleaner output, rerun the tests as



2.6 Testing util/TIMING and util/NOMPI 5

make -s tests

There should be now very limited output reporting the tests of the various modules and methods. Some of
the tests may show small differences relative to the expected results due to round off errors.

2.6 Testing util/TIMING and util/NOMPI

The TIMING utility provides a simple and compiler independent utility to measure the CPU time spent on
various parts of a Fortran code. The NOMPI utility allows to compile an MPI parallel F90 code with the
NOMPI library instead of the MPI library. The resulting executable can run on a single processor. The
NOMPI utility is useful for debugging purposes.

The TIMING can be tested with

cd util/TIMING/src

make tests

An example output is provided in ’tests.log’. To compare with this, rerun the tests like this

make -s tests > tmp.log

diff tmp.log tests.log

Note that the timings and the order of the output can vary from test run to test run. Two of the four tests
involve the NOMPI library, although only a few of the NOMPI methods are used.

3 Description of Functionality Testing

The functionality tests check the functionality of the software in typical configurations. The SWMF uses a
hierarchical test suite. The top level Makefile.test contains various SWMF tests that exercise various subsets
of the models running together. Each model inside the SWMF has (or should have) functionality tests that
check the model in stand-alone mode. In addition, there are tests for the shared library and some of the
utilities. All tests can be executed with

make -j test NP=4 NTHREAD=2 >& test_swmf.log

where NP sets the number of cores and NTHREAD sets the number OpenMP threads to be used. The tests
are typically run from 1 to 8 cores and 1 to 2 threads.

The results of the tests are written into .diff files. An empty .diff file means that the test passed. The
results can be collected with

make test_check

Use

make test_help

to see a complete list of functionality tests for the SWMF. For individual models or libraries, go into the
model directory:

cd GM/BATSRUS

make test_help

cd ../../PW/PWOM

make help

cd ../../share/Library/test

make help

The functionality tests are executed on various machines with various compilers and different number of
processurs every night. The results are collected to a website, currently available at

http://herot.engin.umich.edu/~gtoth/


