
 1

Instructions on Using Git

1 BASICS ... 2

1.1 REGISTRATION AND INITIAL SETUP .. 3
1.2 USE “GITCLONE” AND “GITALL” SCRIPTS .. 3
1.3 ADD YOUR EMAIL ADDRESS TO THE NOTIFICATION LIST .. 4
1.4 SWITCH THE CURRENT REMOTE TO GITHUB/SWMFSOFTWARE ... 4
1.5 SIMPLE TEST .. 5

2 SWMF GIT REPOSITORY ... 5
3 GIT COMMANDS AND TOOLS FOR USERS ... 5

3.1 CLONE A REMOTE GIT REPOSITORY TO A LOCAL ONE ... 5
3.2 TOOLS DEVELOPED FOR THE SWMF WITH MANY GIT REPOSITORIES .. 6
3.3 CHECKING THE DIFFERENCE BETWEEN THE LOCAL GIT REPOSITORY AND THE REMOTE SERVER .. 7
3.4 UPDATE THE GIT REPOSITORY FROM THE REMOTE SERVER ... 7
3.5 PULL A NEW BRANCH FROM THE REMOTE SERVER .. 7

4 WORKING WITH THE SWMF IN GIT .. 8
4.1 WORKING WITH THE ENTIRE SWMF .. 8
4.2 WORKING WITH STAND-ALONE MODELS (BATSRUS, GITM2, PWOM …) ... 8
4.3 USING SWMF_DATA AND CRASH_DATA .. 8

5 GIT COMMANDS AND TOOLS FOR DEVELOPERS .. 9
5.1 SETTINGS FOR LINE ENDINGS ... 9
5.2 MAKE CHANGES TO LOCAL REPOSITORY ... 9
5.3 UNDO CHANGES TO LOCAL REPOSITORY ... 9
5.4 CHECK THE STATUS OF THE PRESENT GIT REPOSITORY ... 10
5.5 PUSH CHANGES TO REMOTE REPOSITORY ... 11
5.6 GET AN OLD VERSION OF A GIT REPOSITORY .. 11
5.7 CREATING A NEW GIT REPOSITORY IN GITHUB .. 12

 2

1 Basics

Git is currently the most popular version control system. It is a distributed system, as each
checked out Git repository has full version history by default and it allows local commits. GitHub
provides a user-friendly web interface to Git repositories. Before we even start, here are some
ground rules for making (in Git terminology “push”) changes in the repository:

• Do not push files larger than 1 Megabyte with the exception of SWMF_data and
CRASH_data repositories that are designated to store large files (up to 100M). Gzip large
ASCII files containing reference solutions or tables if they exceed 100k in size.

• Use “gitall status” to see a complete list of modified files. Make sure that the files are all
committed and they are committed into the repository where they belong.

• Follow the coding standards. See
http://herot.engin.umich.edu/~gtoth/SWMF/doc/SOFTWARE_STANDARD.pdf

• Do not break the code for others. The code should remain in working condition (your own
application can be broken if it is only used by you). Make sure that the freshly checked
out (cloned) code compiles. Run relevant tests with debugging options on and make sure
they pass before push. Push all interdependent changes from all repositories. Do not push
anything right before 7:00pm EDT/EST when the nightly tests start.

• If you pushed changes, check the nightly test page next morning around 10am at
http://herot.engin.umich.edu/~gtoth/. Tests with changed results are CAPITALIZED.
Check the log and see if your changes are responsible for breaking the tests. Fix the code
or undo the changes. Do not leave broken tests for multiple days.

• Do not compromise the performance of the code or slow down the testing drastically. All
functionality tests should finish within 5 minutes on a single core. Unit tests should be
even faster.

• Document your source code. Document the changes in a way that it is meaningful and
useful. Document the input parameters in the XML files. Create or modify nightly tests for
new features and new applications. Keep those nightly tests working and up-to-date.

• If you break these rules often, your write privileges will be taken away. You will still be
able to download (clone and pull), but not push. Your write privileges will only be
reinstated if you can convince the maintainers that your Git usage practices improved.

Users need a GitHub account to access the repositories at https://GitHub.com/SWMFsoftware
without typing passwords. Most repositories are open-source and can be accessed (read-only)
by anyone. To access the few non-public repositories (currently there are two: srcUserExtra and
PWOM) and/or to make changes (write) in the repositories the user needs to contact the SWMF
developers to be added to either the User (read-only access) or the Developers (read/write
access) teams.

http://herot.engin.umich.edu/~gtoth/SWMF/doc/SOFTWARE_STANDARD.pdf
http://herot.engin.umich.edu/~gtoth/
https://github.com/SWMFsoftware

 3

1.1 Registration and initial setup

To create a GitHub account, http://github.com and click on “Sign up” at the top right corner.

The next step is uploading your ssh key to GitHub and you will have to do this once from every
computer where you want to access the GitHub repositories from. Sign into http://github.com
and go to your personal settings by clicking on your image at the top right corner, click on
“Settings” and choose “SSH and GPG keys” on the left side of the webpage. Click on “New SSH
key”, copy your ssh public key (for example .ssh/id_rsa.pub) to the textbox (be careful about
copying multiple lines without adding extra characters) and click “Add SSH key”.

1.2 Use “gitclone” and “gitall” scripts

The following steps need to be done on all machines where you want to access the GitHub
repository from.

Copy or link the gitclone Perl script from share/Scripts/gitclone or download it from

https://github.com/SWMFsoftware/share/blob/master/Scripts/gitclone

into your executable path and make it executable with chmod +x gitclone. The script will clone a
Git repository from the proper URL. Examples:

$ gitclone SWMF -history # from github.com:SWMFsoftware
$ gitclone LATEX Papers/BIBTEX # from github.com:SWMFsoftware
$ gitclone GITM2 UA/GITM2 # from github.com:SWMFsoftware
$ gitclone GITM # from github.com/aaronjridley

See the help message (gitclone -h) for complete description.

Copy or link the gitall script from the cloned share/Scripts/gitall into your executable path to
handle multiple Git repositories in subdirectories. Examples of use

$ gitall -v status
$ gitall pull

See the help message (gitall -h) for complete description.

Apply the following setting to make sure that you don’t store outdated and potentially excessive
(in terms of disk usage) Git history in the .git directory of the local repository:

http://github.com/
http://github.com/

 4

$ git config --global pull.rebase true

This configuration setting will also be executed by the gitclone and gitall scripts.

The GitHub access may be blocked if there are many access attempts from the same IP address
in rapid succession. If this happens, set the GITHUBSLEEP environment variable to the number of
seconds between successive accesses. For example, use

$ setenv GITHUBSLEEP 5 # csh, tcsh
$ export GITHUBSLEEP=5 # bash, ksh, zsh

in the appropriate shell initialization script (.cshrc, .bashrc, …). You need to wait a minute or two
before the firewall resets after the blocking and you can start using gitall with the properly set
GITHUBSLEEP environment variable.

1.3 Add your email address to the notification list

If you want to get notified by email when there is a new commit to a GitHub repository, ask the
SWMF developers to add you to the forwarding rules of the SWMFnotification@gmail.com email
account.

1.4 Switch the current remote to GitHub/SWMFsoftware

If you have a working repository that uses an obsolete remote and you want to preserve your
current changes then you need to switch the remote to GitHub/SWMFsoftware. If unsure about
the remote repository, you can type

$ git remote -v
origin git@gitlab.umich.edu:swmf_software/SWMF (fetch)
origin git@gitlab.umich.edu:swmf_software/SWMF (push)

which shows that the remote is gitlab.umich.edu. To change it to GitHub.com/SWMFuser use

$ gitall -remote
$ git remote -v
origin git@github.com:SWMFsoftware/SWMF (fetch)
origin git@github.com:SWMFsoftware/SWMF (push)

After this you may update, merge and commit changes:

$ gitall fetch # fetch from Github/SWMFsoftware
$ git diff origin # check differences
$ Merge files # merge as needed
$ gitall push # now the change will be saved at Github

mailto:SWMFnotification@gmail.com

 5

1.5 Simple test

When you finished all the setup, please try to clone the BATL repo from GitHub and see if you
can successfully install it:

$ gitclone BATL
$ cd BATL
$./Config.pl -install

2 SWMF Git Repository

The version control information is stored at the top-level directory of the repository. To
accommodate the SWMF structure where models can be checked out in stand-alone mode as
well as part of the SWMF, we use multiple Git repositories. We created several Git repositories
(SWMF.git, BATSRUS.git, GITM2.git, share.git, util.git and so on). All the SWMF related Git
repositories are stored in the

github.com:SWMFsoftware/

group. To make cloning (downloading) the SWMF and/or individual models, like BATS-R-US,
easier, the Config.pl scripts can take care of cloning the Git repositories corresponding to the
various subdirectories of the SWMF. In short, the SWMF git repository has multiple other git
repositories in its subdirectories.

3 Git Commands and Tools for Users

3.1 Clone a remote git repository to a local one

$ gitclone -history REPONAME LOCALNAME

The optional LOCALNAME allows changing the directory name locally.

Figure 1 The working logic of Git system

 6

The command above clones the remote repository to the local machine with complete version
history. However, the size of the local SWMF repository with all models included will be about
900 MB. To save disk space and reduce download time, the default is to clone repositories
without history. For example

$ gitclone SWMF SWMF_NO_HISTORY

clones the SWMF with the latest version only and the size is reduced to about 260 MB.

3.2 Tools developed for the SWMF with many git repositories

The Config.pl script now checks the existence of the necessary components, for example, the
share/ and util/ subdirectories, and clones them from GitHub if necessary. In addition, the
Config.pl script in the SWMF will also clone the SWMF models (like BATSRUS, AMPS, etc) during
installation as needed.

We provide a script gitall in share/Scripts. This script will recursively search the git repositories
and execute the git command passed to it. It is best to link or copy gitall into the execution path,
so it can be used easily from any directory. Notice that gitall only searches the subdirectories.
For example, to check the status of all the git repositories in the SWMF, type the following at the
top-level SWMF directory:

$ gitall status

By default, there is output only if there is a change in the repository. Using the -v flag (verbose)

$ gitall status -v

will show all the git repositories even if there are no changes in them. Other possible uses include

$ gitall branch -a # show available and selected branches in all repositories
$ gitall checkout stable # switch to the “stable” branch in all git repositories when available
$ gitall checkout master # switch to the “master” branch in all git repositories
$ gitall fetch origin # get latest version of the code from GitHub
$ gitall difftool origin # compare local version with the version copied from GitHub
$ gitall merge origin # merge local and copied versions
$ gitall pull # simply update the local source code from GitHub
$ gitall push # push all the changes to GitHub, remember to commit first!

Doing commit with gitall is not recommend since commit logs are typically independent in
different repositories.

 7

3.3 Checking the difference between the local git repository and the remote server

First of all, it is useful to define a visual difference tool, such as tkdiff or filemerge, to be accessible
by Git. Use the following command

$ git config --global diff.tool tkdiff

When other developers modified the project and pushed changes to the remote repository, it is
useful to check the differences between the local and remote repositories. It can be done using
gitall in top level of SWMF

$ gitall fetch origin # update the version information of the remote
$ gitall diff origin # compare the local branch with ‘origin’ (the newest version in remote)
$ git difftool origin # compare the local branch with origin using the difftool defined above

3.4 Update the git repository from the remote server

If the ‘origin’ branch was downloaded with ‘gitall fetch origin’, the changes can be merged with
the local master branch using

$ gitall merge origin

Please refer to the internet for information about dealing with conflicts during the merging. If
you are confident about the correctness of the remote repository, the fetch and merge steps
can be replaced with a single command:

$ gitall pull

This will update your local repository (equivalent to fetch+merge). This is the most common and
simple approach.

3.5 Pull a new branch from the remote server

If the remote server has a new branch (for example named “stable”) that is not present in the
local repository, do the following:

$ git fetch origin stable
$ git checkout -b stable

You can see all branches and the selected one (marked with a *) with

$ git branch -a

 8

4 Working with the SWMF in Git

4.1 Working with the entire SWMF

Clone the core SWMF repository without models:

$ gitclone SWMF

Now you have a local SWMF repository without share, util and the physics models. The new
features of Config.pl can take care of cloning (downloading) the missing pieces:

$./Config.pl # show SWMF info and clone util and share if missing
$./Config.pl -install # install SWMF with all models (clone the entire SWMF)
$./Config.pl -install=BATSRUS,PWOM # install SWMF, clone GM/BATSRUS, PW/PWOM if missing
$./Config.pl -install=AMPS_PT # reinstall SWMF, clone PT/AMPS if necessary

Note that models that are already present will not be cloned again during reinstallation.

4.2 Working with stand-alone models (BATSRUS, GITM2, PWOM …)

First clone the BATSRUS repository:

$ gitclone BATSRUS

Like in the SWMF, now you can use Config.pl to get all the necessary repositories, for example

$./Config.pl -install -compiler=gfortran

will automatically clone (check out) the share, util and srcBATL repositories into BATSRUS if not
yet present. Note that these are independent Git repositories.

4.3 Using SWMF_data and CRASH_data

The large files are stored in the SWMF_data and CRASH_data repositories. These can be checked
out into the home directory as

$ cd
$ gitclone SWMF_data
$ gitclone CRASH_data

This should be done before installing the SWMF or stand-alone model so that the ‘data/’
symbolic links can be properly created.

 9

The information provided by now should be sufficient for a user who will not change the code.

5 Git Commands and Tools for Developers

5.1 Settings for line endings

If you're using Git to collaborate with others, ensure that Git is properly configured to handle
line endings, on OSX use

$ git config --global core.autocrlf

5.2 Make changes to local repository

In essence use “git” followed by the Unix commands to remove and rename files and directories,
use “add” to add a new file and “commit” to commit the changes into the local repository:

$ git rm -rf DIR1
$ git rm FILE1
$ git commit -m "removed FILE1 and DIR1 because …"
$ git mv FILE2 FILE3
$ git commit -m “renamed FILE2 to FILE3”
$ emacs FILE4
$ git status # make sure that FILE4 shows up as ‘Untracked’ so you are in the right repository!
$ git add FILE4
$ git commit -m “Created FILE4 that contains ….”

Without the -m flag the editor (defined by the $EDITOR environment variable) opens to allow
logging the changes. Meaningful logs that describe the changes, the reasons for them and the
consequences are extremely important and useful. You can also commit files separately and
provide separate logs. This is recommended if the changes in different files are not related to
each other.

The steps above affect the local git repository only. This allows storing multiple versions with a
complete version history locally without making changes in the remote repository.

5.3 Undo changes to local repository

Sometimes an accidental or temporary change is made. There are various ways to undo the
change depending on the status of the change:

(1) Change hasn’t been added to the index (no git add or git commit has been done)

 10

$ git checkout FILE1 # undo changes in FILE1
$ git checkout . # undo all changes in the repository

(2) Change has been added to the index but not committed (git add but no commit)

$ git reset HEAD FILE1 # use git reset to remove changed FILE1 from index
$ git checkout FILE1 # undo changes on FILE1

$ git reset HEAD # use git reset to remove all changed files from index
$ git checkout . # undo all changes

(3) Change has been committed but not pushed (git commit has been done)

$ git reset HEAD^ # revert the commit to current workspace
$ git checkout . # undo all changes
$ git checkout FILE1 # undo changes on FILE1

(4) Change has been pushed (git push has been done)

Undo the modifications and commit and push them. Note that this really should not happen,
because changes should be properly tested before being pushed to GitHub.

A figure to explain this:

5.4 Check the status of the present git repository

After working for a while, to check what you have done, in top level of the SWMF type

$ gitall status

Check the changes in all the modified files:

$ gitall diff # list all differences in the repository tree
$ git difftool # after examining a file with the difftool, git jumps to the next file

Note: gitall difftool is not recommended, as it will open multiple tkdiff windows.

 11

Also, tkdiff can be used directly to examine the changes made to FILE1 (this only works in the top
level directory of the Git repository):

$ tkdiff FILE1 # compare modified FILE1 to local master version
$ tkdiff -rorigin FILE1 # compare modified FILE1 to remote version fetched

5.5 Push changes to remote repository

After a period of local development, you may want to push the changes to the remote server
Make sure you are on the master branch in the local repository as well as in the submodules.

$ gitall push # Note that gitall executes in the current directory and its subdirectories!

5.6 Get an old version of a git repository

Nightly tests of the SWMF can reveal bugs introduced during the code development. To identify
the reason, it is necessary to compare versions of the SWMF at different dates. To get an old
version, you need to clone the SWMF with full history. The default installation is without history
(to save download time and disk space). To get full history, use the gitclone script with the
-history parameter. The -date=DATE flag (which obtains full history and then sets the checkout
date) can be used to get the code version of the required date:

$ gitclone -history SWMF SWMF_2018_06_19
$ cd SWMF_2018_06_19
$./Config.pl -clone -date="2018-06-19 19:00"

This will set the SWMF to the version tested at 19:00 EDT, June 19, 2018. Note that the resulting
git repository will be in a status called “detached HEAD”. Changes made in this repository cannot
be committed or pushed. If you start from a repository tree that has no history, you need to pull
the history first and then set the date:

$ gitall pull --depth 1000
$./Config.pl -date="2018-06-19 19:00"

One can revert a single file to an earlier version (to correct an incorrect commit, for example).
Note the backticks in the example below:

$ git reset `git rev-list -1 --before="2018-06-19 19:00" master` FILE1
$ git checkout FILE1 # use the older version to overwrite the version in the workspace
$ git commit -m “revert FILE1 to an older version because…” FILE1 # commit to the local index
$ git push # push the reverted version to GitHub if it works correctly

Note that the version overwritten remains available in the Git history.

 12

5.7 Creating a new git repository in GitHub

Log in to github.com/SWMFsoftware and select the Repositories tab. Click on the New
Repository button at the top and follow the instructions. Set the repository name and upload,
select between private and public (open-source) options and upload the repository. Once the
repository is created, try to clone it to a new location to see if it works.

Then select the repository under Git and go to Settings to set the email addresses for push
notification (see section 1.3 above). GitHub allows at most two email addresses. Use the
address SWMFnotification@gmail.com to share the notification with more than two people.

Next go to “Collaborators and Teams” item and click on “Add teams”. Add the “developers”
team with “Write” permission.

Try to add, commit and push a change from the cloned directory, for example a README.md
file and see if it works and if you get the notification email.

mailto:SWMFnotification@gmail.com

