
Polar Wind Outflow Model User Manual

Alex Glocer

Center for Space Environment Modeling
The University of Michigan

April 23, 2024

2

Contents

1 Introduction 5
1.1 Acknowledgments . 5
1.2 The PWOM in a Few Paragraphs . 5
1.3 System Requirements . 6

2 Quick Start 7
2.1 A Brief Description of the PWOM Distribution . 7
2.2 General Hints . 7
2.3 Installing the Code . 8
2.4 Creating Documentation . 9
2.5 Building and Running an Executable . 9
2.6 Restarting a Run . 10
2.7 What next? . 10

3 The Basics 11
3.1 Configuration of PWOM . 11

3.1.1 Setting compiler flags in Makefile.conf and with Config.pl 11
3.1.2 Planet Configuration . 12

3.2 PARAM.in . 12
3.2.1 Commands, Parameters, and Comments . 12
3.2.2 The Order of Commands . 12
3.2.3 Iterations, Time Steps and Time . 13

4 Using the PWOM as the PW component of the SWMF 15
4.1 Configuring the SWMF to use PWOM . 15
4.2 Coupling the PW component with other components . 15

5 Example Runs 17
5.1 Earth Examples . 17

5.1.1 Configuration and Compilation for the Earth Examples 17
5.1.2 Example 1: Single field line simulation and visualization 17
5.1.3 Example 2: Multi field line simulation and visualization 18

5.2 Saturn Example . 18
5.2.1 Example 3: Single field line simulation . 19

6 Complete List of Input Commands 21
6.1 Input Commands for the PWOM: PW Component . 21

6.1.1 Numerical scheme . 21
6.1.2 Input/output . 23
6.1.3 Control . 25

3

4 CONTENTS

6.1.4 Physics . 26

Index of Input Commands 28

Chapter 1

Introduction

This document descibes the installation, configuration, execution and usage of the Polar Wind Outflow
Model (PWOM).

1.1 Acknowledgments

The PWOM was developed at the Center for Space Environment Modeling (CSEM) of the University of
Michigan. The core software designers and code developers: Alex Glocer, Gábor Tóth. The origional version
of the model was developed by Tamas Gombosi.

1.2 The PWOM in a Few Paragraphs

The Polar Wind Outflow Model (PWOM), solves the gyrotropic continuity, momentum and energy equations
that describe the supersonic ion outflow along open magnetic field lines in the polar region. The PWOM
can simulate the polar winds of Earth and Saturn. At Earth the behavior of three ion species, O+, H+,
and He+ are considered, while at Saturn only two species, H+ and H+

3 , are considered. The model assumes
a stationary neutral atmosphere. Ranging in altitude from 250 km to 8,000 km for the Earth version, or
1,400 to 61,000 km for the Saturn version, the PWOM has its lower boundary set in a reservoir at chemical
and thermal equilibrium, while the top boundary is at considerably lower pressure, thus creating a transonic
outflow to a low pressure external medium. The considerable altitude range covers two different regimes; the
collision and chemistry dominated low altitude, and the expansion dominated high altitude. Furthermore,
the ambipolar electric field is calculated at every time step, and is a major contributor to ion outflow. Other
physical effects that are included in the PWOM, are topside electron heating, photo-ionization, and the
expanding cross-sectional area of the magnetic flux tube.

Obtaining a single field line solution yields the vertical solution at one point. The field line convects as
determined from the polar cap potential. By solving several field lines distributed throughout the polar cap,
the full solution can be obtained. Since each field line solution is independent, this problem is embarassingly
parallel. Accordingly, we use the Message Passing Interface (MPI) to split the computational work evenly
among processors.

The PWOM can be compiled into standalone or coupled mode. In the standalone mode, the polar cap
potential is read from a file or calculated from the Weimer empirical model, and the polar wind solution
is obtained independantly of other models.In the coupled mode, the PWOM interacts with the SWMF via
a coupling interface known as a wrapper. In this case the polar cap potential is obtained from the IE
component, and the fluxes at the top of the PWOM are passed to the GM component. Most of this manual
is devoted to the standalone operation of the PWOM, but chapter 4 discusses some details on how to utilize
the coupled model.

5

6 CHAPTER 1. INTRODUCTION

The PWOM has been tested on the SGI Altix, on Linux Beowulf clusters with the NAG f95 compiler.
We have also run the PWOM with reasonable success under Mac OS Darwin using the XLF and NAG f95
compilers, and under Linux with the PGF90 compiler.

1.3 System Requirements

In order to install and run the PWOM the following minimum system requirements apply.

• The PWOM runs only under the UNIX/Linux operating systems. This now includes Macintosh system
10.x because it is based on BSD UNIX. The PWOM does not run under any Microsoft Windows
operating system.

• A FORTRAN 90 compiler must be installed.

• The Perl interpreter must be installed.

• A version of the Message Passing Interface (MPI) library must be installed.

• Small tests such as single field-line simulations can be done on a single processor

• Very large runs require many more processors.

• In order to generate the documentation you must have LaTex installed on your system. The PDF
generation requires the dvips and ps2pdf utilities.

In addition to the above requirements, the PWOM output is designed to be visualized using either IDL
or Tecplot. You may be able to visualize the output with other packages, but formats and scripts have been
designed for only these two visualization softwares.

Chapter 2

Quick Start

2.1 A Brief Description of the PWOM Distribution

The top level directory contains the following subdirectories:

• src - Source code of planet independent code

• srcEarth - Source code of Earth specific code

• srcSaturn - Source code of Saturn specific code

• Scripts - shell and Perl scripts

• bin - location of executable

• doc - the documentation directory

• share - shared scripts and source code

• util - general utilities such as TIMING and NOMPI

and the following files

• README - a short instruction on installation and usage

• Makefile - the main makefile

• Config.pl - Perl script for (un)installation and configuration

2.2 General Hints

Getting help with scripts and the Makefile

Most of the Perl and shell scripts that are distributed with the PWOM provide help which can be accessed
as follows using the -h flag. For example,

Config.pl -h

will provide a detailed listing of the options and capabilities of the Config.pl script. In addition, you can
find all the possible targets that can be built by typing

make help

7

8 CHAPTER 2. QUICK START

Input commands: PARAM.XML

A very useful set of files to become familiar with are the PARAM.XML files.
This file contains a complete list of all input commands for the component as well as the allowed ranges

for each of the input parameters. Although the XML format makes the files a little hard to read, they
are extremely useful. A typical usage is to cut and paste commands out of the PARAM.XML file into the
PARAM.in file for a run.

2.3 Installing the Code

The first step in installing the PWOM is untarring the distribution. If the tar program knows about the -z
flag, you can open the gzipped tar files with a single UNIX command:

tar xzf SOMETARFILE.tgz

If the tar program does not recognize the -z flag, two steps are needed:

gunzip SOMETARFILE.tgz

tar xf SOMETARFILE.tar

In the following descriptions the shorter form is shown, but you may need to use the two step procedure on
certain platforms.

Untar the distribution using the command:

tar xzf PWOM.tgz

Change directories into the distribution:

cd PWOM

The PWOM needs to know what architecture you are running the code on and what FORTRAN compiler
will be used. For most platforms and compilers, it can figure this out all by itself. To install PWOM run
the command:

Config.pl -install

in the main directory. This creates Makefile.def with the correct absolute path to the base directory
and Makefile.conf which contains the operating system and compiler specific part of the Makefile. If the
compiler is not the default one for a given platform (e.g. not the NAG f95 compiler for a Linux platform)
then the compiler must be specified explicitly with the -compiler flag. If the MPI header file is not the
default one, it can be specified with the -mpi flag. For example on a Mac machine one can select the g95
compiler with the Intel version of the MPI library using

Config.pl -install -compiler=g95 -mpi=Intel

To uninstall PWOM type

Config.pl -uninstall

If the uninstallation fails (this can happen if some makefiles are missing) do reinstallation with

Config.pl -install

and then try uninstalling the code again. To get a complete description of the Config.pl script type

Config.pl -h

2.4. CREATING DOCUMENTATION 9

2.4 Creating Documentation

The documentation for PWOM can be generated from the distribution by the command

make PDF

which creates the user manual

doc/PWOM.pdf

In order for this to work you must have LaTex installed on your system (and dvips and ps2pdf).
To clean the intermediate files type

cd doc/Tex

make clean

To remove all the created documentation type

cd doc/Tex

make cleanall

2.5 Building and Running an Executable

Compilation flags, such as the precision and optimization level are stored in Makefile.conf. This file is
created on installation of the PWOM and has defaults which are appropriate for your system architecture.
The precision of reals can be changed to single precision (for example) by typing

Config.pl -single

while the compiler flags can be modified with

Config.pl -debug -O0

to debug the code with 0 optimization level, and

Config.pl -nodebug -O4

to run the code at maximum optimization level and without the debugging flags.
To specify which planet the PWOM should be set to use

Config.pl -Earth or Config.pl -Saturn

To build the executable bin/PWOM.exe, type:

make

Depending on the configuration, the compiler settings and the machine that you are compiling on, this can
take from 1 to up to 5 minutes.

The PWOM.exe executable should be run in a sub-directory, since a large number of files are created in
each run. To create this directory use thecommand:

make rundir

This command creates a directory called run. You can either leave this directory as named, or mv it to a
different name. It is best to leave it in the same PWOM directory, since keeping track of the code version
associated with each run is quite important. The run directory will contain links to the codes which were
created in the previous step as well as subdirectories where input and output will reside.

Here we assume that the run directory is still called run:

10 CHAPTER 2. QUICK START

cd run

In order to run the PWOM you must have the input files: PARAM.in. The PARAM.in file contains the
detailed commands for controlling what you want the code to do during the run. The default PARAM.in
file in the run directory suitable to perform a simple test.

To run the PWOM interactively on four processors:

cd run

mpirun -np 4 PWOM.exe

To recompile the executable with different compiler settings you have to use the command

make clean

before recompiling the executables. It is possible to recompile only a component or just one subdirectory if
the make clean command is issued in the appropriate directory.

2.6 Restarting a Run

There are several reasons for restarting a run. A run may fail due to a run time error, due to hardware
failure, due to software failure (e.g. the machine crashes) or because the queue limits are exceeded. In such
a case the run can be continued from the last saved state of PWOM.

The restart files are saved at the frequency determined in the PARAM.in file. Normally the restart
files are saved into the PW/restartOUT directory. The files in that directory need only be copied into the
PW/restartIN directory inorder to prepare a restarted run.

2.7 What next?

Hopefully this section has guided you through installing the PWOM and given you a basic knowledge of how
to run it. So what next?

We suggest that you read all of chapter 3, which outlines the basic features of the PWOM as well as
some things you really must know in order to use the PWOM. Once you have done this you are ready to
experiment. Chapter 5 gives several examples which are intended to make you familiar with the use of the
PWOM. We suggest that you try them!

Chapter 3

The Basics

3.1 Configuration of PWOM

Configuration refers to several different ways of controlling how the PWOM is compiled and run. The most
obvious is the setting of compiler flags specific to the machine and version of FORTRAN compiler. The
other methods refer to ways in which planet the PWOM is configured to solve.

3.1.1 Setting compiler flags in Makefile.conf and with Config.pl

The compiler flags can be modified by editing

Makefile.conf

This makefile is created during installation, and it contains the platform and compiler specific part of the
makefile system. The most usual changes can be easily done with the Config.pl script. The precision of real
numbers can be set with

Config.pl -single

or

Config.pl -double

If the precision is modified, the script will execute ’make clean’, so that all the files are compiled with the
new real precision.

The debugging flags can be switched on and off with

Config.pl -debug

and

Config.pl -nodebug

respectively. The maximum optimization level can be set to -O2 with

Config.pl -O2

The minimum level is 0, the maximum is 4 (Note that not all compilers support level 4 optimization).

11

12 CHAPTER 3. THE BASICS

3.1.2 Planet Configuration

The PWOM is set to have a very general core of code, and planet specific files that define the chemistry,
neutral and ion species and other planet parameters. The planet specific codes are stored in srcEarth or
srcSaturn. When the PWOM is confifugured for a specific planet, the planet specific codes are copied into
the src directory. To configure the PWOM for earth simply type

Config.pl -Earth

to configure for Saturn

Config.pl -Saturn

3.2 PARAM.in

The input parameters for the PWOM are read from the PARAM.in file which must be located in the run
directory.

We refer to the lines starting with a # character as commands.

For example if the command string

#END

is present, it indicates the end of the run and lines following this command are ignored. If the #END
command is not present, the end of the file indicates the end of the run.

There are several features of the input parameter file syntax that allow the user to easily run the code in
a variety of modes while at the same time being able to keep a library of useful parameter files that can be
used again and again.

The syntax and the content of the input parameter files is defined in the PARAM.XML files.

This file can be read (and edited) in a normal editor. The same files are used to produce much of this
manual with the aid of the share/Scripts/XmlToTex.pl script. The Scripts/TestParam.pl script also
uses these files to check the PARAM.in file. Copying small segments of the PARAM.XML files into PARAM.in

can speed up the creation or modification of a parameter file.

3.2.1 Commands, Parameters, and Comments

The commands in the PARAM.in file are necessary for instucting the PWOM to carry out the simulation.
The following is an example of a parameter.

#TIMEACCURATE

F DoTimeAccurate

In this example, the parameter is #TIMEACCURATE and the command is DoTimeAccurate.

3.2.2 The Order of Commands

In essence, the order of parameter commands within a session is arbitrary, but there are some important
restrictions. We should note that the order of the parameters following the command is not arbitrary and
must exactly match what the code requires.

3.2. PARAM.IN 13

3.2.3 Iterations, Time Steps and Time

In several commands the frequency or ‘time’ of some action has to be defined. This is usually done with a
pair of parameters. The first defines the frequency or time in terms of the number of time steps, and the
second in terms of the simulation time. A negative value for the frequency means that it should not be taken
into account. For example, in time accurate mode,

#SAVEPLOT

-1 DtSavePlot

2000 DnSavePlot

T SaveFirst

means that a plot file should be saved after every 2000th time step, while

#SAVEPLOT

100 DtSavePlot

-1 DnSavePlot

T SaveFirst

means that it should be saved every 100 seconds in terms of physical time.

14 CHAPTER 3. THE BASICS

Chapter 4

Using the PWOM as the PW
component of the SWMF

The polar wind outflow can have a significant impact on the solution in the magnetosphere. Likewise,
changes in the field aligned currents and ionospheric convection can modify the polar wind. Because of the
importance of including such connections in our model, we now turn to the issue of how to use the PWOM
as a component of the SWMF.

4.1 Configuring the SWMF to use PWOM

Configuring the SWMF to use the PWOM is straight forward. Simply type:

Config.pl -v=PW/PWOM

Doing so tells the SWMF that the PWOM will represent the PW component of the SWMF. This configuration
allows the user to execute the PWOM through the SWMF without any other components.

Should the user wish to include, say, a global magnetosphere or the ionosphere electrodynamics the
configuration is simply:

Config.pl -v=PW/PWOM,GM/BATSRUS,IE/Ridley_serial

Coupling with these other components is described in greater detail in the next section.

4.2 Coupling the PW component with other components

The PWOM represents the PW component of the SWMF. It can be directly coupled to the Global Magne-
tosphere (GM) and Ionosphere Electrodynamics (IE) components by using the

#COUPLE1

or

#COUPLE2

commands (See the SWMF manual for details). The IE component is coupled in a unidirectional manner
with the PW component, by which the polar cap potentials and field aligned currents are passed to PW but
no information flows in the opposite direction.

The PW-GM coupling is more complicated. The GM component can be coupled unidirectionally, with the
PW component setting the densities and velocities at the GM inner boundary, or it can be set bidirectionally

15

16 CHAPTER 4. USING THE PWOM AS THE PW COMPONENT OF THE SWMF

where the magnetospheric pressure is used to set the upper boundary of the PW model. The latter coupling
is untested so we will focus on the first form in the documentation.

There are several options for how the coupling between GM and PW can proceed. They all, however,
start with the same command in the PARAM file:

#COUPLE1

PW COMP1

GM COMP2

10.0 DTcoupling

The default method for coupling the PW and GM components is to combine the individual fluid densities
and velocities at the upper boundary of PW into a single fluid density and velocity. However, the user may
want to preserve the component information so as to track magnetospheric composition. In this case, the
GM component can be configured to use the multi-species equations:

Config.pl -o=GM:e=MhdPw

In this case the individual species densities are preserved, but the velocities are combined into a single fluid
velocity. This is because the multi-species MHD representation of BATS-R-US solves separate continuity
equations, but a single momentum and energy equation.

The user also has the option to preserve velocity information as well as density information when putting
the PW output into GM. This requires the user to configure the GM component to solve the full multi-fluid
equations:

Config.pl -o=GM:e=MultiIon

In this case the individual species densities and velocities are conserved, as BATS-R-US solves a full conti-
nuity, momentum, and energy equation for each species.

Chapter 5

Example Runs

In this chapter we will provide some examples of how to actually use the PWOM. After reading this chapter
you should be familiar enough with the use of the model to setup your own simple runs. Three stand-alone
examples are provided: Two for Earth and one for Saturn. The tests will require two separate configurations
and compilations. One for each planet.

Additionally one example of using the PWOM as the PW component of the SWMF is provided. This
example assumes that you already have the SWMF installed.

5.1 Earth Examples

5.1.1 Configuration and Compilation for the Earth Examples

The default configuration of the PWOM is for the planet Earth. To check the current configuration, type

Config.pl

from the PWOM directory. If the PWOM is not currently configured for Earth, then type

Config.pl -Earth

and the planet configuration will be changed to Earth. After changing the configuration to Earth, the code
will need to be recompiled. This can be accomplished by simply typing

make

To carry out the examples in the following subsections, a run directory is needed. The creation of a run
directory can be accomplished by typing

make rundir

This command creates a directory called ’run’. Changing into the newly created run directory, we are now
prepared to carry out the example simulations

5.1.2 Example 1: Single field line simulation and visualization

In the run directory there is a PARAM.in file that is set up for 4 field lines. Changing the #FIELDLINES
command from 4 to 1 allows us to simulate a single field line. The initial solution for the field line is given in

restartIN/restart_iline0001.dat

17

18 CHAPTER 5. EXAMPLE RUNS

The location of the field line can be changed by editing the restart file above. The second line of said file
gives the latitude and longitude of the field line foot point. Modifying these numbers will change the location
of the field line. The code can then be run by typing.

./PWOM.exe

The result is given in the plots directory and the restart file is given in the restartOUT directory.
The results can be visualized using the IDL routines described in the BATS-R-US user manual. Simply

change into the plots directory and you will see several files labeled as

plots_iline*.out

Where the star refers to the line number. Entering IDL you can then visualize the solution using the

.r getpict

.r plotfunc

commands as described in the BATS-R-US manual.

5.1.3 Example 2: Multi field line simulation and visualization

To carry out a run with a multiple field lines, the first thing that needs to be done, is to edit the PARAM.in
file. Change the #FIELDLINES command from 1 to 125. We then need initial solutions for each field line.
Type

cp ../Scripts/CreateRestart.pl restartIN/

from the run directory. Change directories into the restartIN directory and type

CreateRestart.pl

Returning to the PWOM directory, we are now prepared to carry out a multi field line simulation. Simply
type

./PWOM.exe

or use mpirun to execute the code on as many processors as you desire (up to the number of field lines).
Each individual field line can be visualized as before, but sometimes a horizontal slice is desired. To

visualize a 2D horizontal slice change into the plots directory. Then type

../Scripts/PostProcessTec.pl

../Scripts/CreateMacro.pl

At each command you will be prompted for the altitude slice of interest. There should now be 2D Tecplot
files and a corresponding Tecplot macro file called Macro.mcr. Now just open up Tecplot and run the macro.

5.2 Saturn Example

Return to the PWOM directory. To change the planet configuration to Saturn, simply type

Config.pl -Saturn

The code must then be recompiled. To do this, type

make

5.2. SATURN EXAMPLE 19

5.2.1 Example 3: Single field line simulation

Move the old run directory out of the way as follows:

mv run run_earth

Then create a new run directory by typing

make rundir

Then change into the run directory. Everything should now be prepared for a Saturn simulation. Carry out
the simulation as before. The visualization is then the same as before.

20 CHAPTER 5. EXAMPLE RUNS

Chapter 6

Complete List of Input Commands

The content of this chapter is generated from the Param/PARAM.XML file. The XML file can be read with
an editor and can be used for creating PARAM.in files by copying small parts from them.

The transformation of the XML format into LaTex is done with the share/Scripts/XmlToTex.pl script.
This script generates index terms for all commands, which are used to create an alphabetical index at the
end of this chapter.

6.1 Input Commands for the PWOM: PW Component

List of PW commands used in the PARAM.in file

6.1.1 Numerical scheme

#SCHEME command

#SCHEME

Godunov TypeSolver

Godunov TypeFlux

0.05 DtVertical

F IsFullyImplicit

F IsPointImplicit

F IsPointImplicitAll

TypeSolver sets the type of solver which is to be used. Currently only two options are available: Godunov
and Rusanov. These are actually both Godunov type schemes, but with a first order exact Riemann solver or
a second order approximate Riemann solver. TypeFlux sets the intercell flux for the approximate Riemann
solver and hence only matters when the Rusanov option is selected for the TypeSolver. The three choices are
LaxFriedrichs, Rusanov, and HLL. DtVertical sets the time step for plasma propagating along the field line.
IsFullyImplicit determines whether the fully implicit time stepping is used. If not, the last two parameters
are also read. IsPointImplicit determines if the point implicit scheme is used or not for the collision terms.
IsPointImplicitAll is true if all terms are point implicit.

The default values are shown.

#LIMITER command

#LIMITER

1.5 LimiterBeta

Sets the beta parameter in the Rusanov scheme.

21

22 CHAPTER 6. COMPLETE LIST OF INPUT COMMANDS

#VERTICALGRID command

#VERTICALGRID

390 nPoints

2e6 DeltaR

Sets the number of grid points in the vertical direction and the grid spacing.

#REGRID command

#REGRID

T DoRegrid (rest of parameters read if true)

T DtRegrid

F DoSavePoints

If DoRegrid is true then regrid the field footpoints every DtRegrid seconds. If DoSavePoints is true, save the
footpoints and the triangulation before the regridding is done. The goal is to maintain a relatively uniform
coverage of the polar region.

Default is DoRegrid false.

#TIMEACCURATE command

#TIMEACCURATE

T IsTimeAccurate

DoTimAccurate determines if the field lines are solved in time accurate mode or in steady state mode.

#TIMESTEP command

#TIMESTEP

50 DtHorizontal

DtHorizontal is the time step for horizontal motion of the field line. Default value is shown.

#VARIABLEDT command

#VARIABLEDT

F IsVariableDt

When IsVariableDt=T then the vertical time step is variable based on the change in pressure.

#MOTION command

#MOTION

T DoMoveLine

This command determines which to move the field lines as determined by the horizontal convection, or to
hold them in their initial locations. The default value is shown.

#ROTATION command

#ROTATION

T UseCentrifugalForce

This command determines whether centrifugal forces should be included. The default is shown.

6.1. INPUT COMMANDS FOR THE PWOM: PW COMPONENT 23

#FIELDLINE command

#FIELDLINE

1 nTotalLine

nTotalLine sets the number of field lines included in the simulation. The default is shown.

6.1.2 Input/output

#TEST command

#TEST

PW_move_line StringTest

0 iProcTest

2 iLineTest

Set test parameters. The subroutines to be tested are listed in StringTest, the tested processor is iProcTest,
and the tested field line is iLineTest. If iLineTest is 0, all field lines produce test output.

Default is an empty StringTest, i.e. no test output is produced.

#RESTART command

#RESTART

T IsRestart

If the IsRestart variable is true, then the PWOM uses a restart file. Otherwise, the PWOM uses a cold start
routine. The default is shown.

#TYPEPLOT command

#TYPEPLOT

real4 TypePlot (ascii/real4/real8)

The type (format) of the plot files written. The value ”ascii” produces a simple text file, ”real4” is single
precision binary and ”real8” is double precision binary format.

Default value is ”ascii”.

#SAVEPLOT command

#SAVEPLOT

10.0 DtSavePlot

-1 DnSavePlot

T DoSaveFirst

F DoAppendPlot

The frequency which plot files are written out are defined here. DoSaveFirst determines whether or not to
save a plot on the first call. DoAppendPlot sets appending or not to previous plot file. Default values are
shown.

24 CHAPTER 6. COMPLETE LIST OF INPUT COMMANDS

#SAVEPLOTELECTRODYNAMICS command

#SAVEPLOTELECTRODYNAMICS

F DoPlotElectrodynamics

10 DtPlotElectrodynamics

DoPlotElectrodynamics determines whether the electrodynmics plot information is saved. For instance the
field aligned currents, and the polar cap potental can be saved with this command. The frequency of output
is determined by the DtPlotElectrodynamics parameter.

#PLOTENERGYGRID command

#PLOTENERGYGRID

log TypeSpecGrid

0.1 EminSpecGrid

100.0 EmaxSpecGrid

25 nSpecGrid

These are parameters for the flux spectrum particle output grid. It defines the type of grid (linear or log),
the minimum energy, the maximum energy, and the number of grid points. Defaults are shown. Note that
this is just the output grid and does not affect the calculation itself.

#NGDC INDICES command

#NGDC_INDICES

ApFile.dat NameApIndexFile

f107.txt NameF107File

Read the Ap index and F10.7 from two files and calculate the appropriate array of AP indices to feed to
MSIS.

#NOAAHPI INDICES command

#NGDCHPI_INDICES

HpiFile.dat NameHpiFile

Read the HPI from a file. Used to get the Auroral ionization and heating

#HPI command

#HPI

0 HemisphericPower

Set the HPI to a constant value. Used to get the Auroral ionization and heating

#AURORA command

#AURORA

F UseAurora

Set whether or not to include auroral ionization and bulk heating.

6.1. INPUT COMMANDS FOR THE PWOM: PW COMPONENT 25

#SOLARWIND command

#SOLARWIND

0 Bx

0 By

0 Bz

400 Vx

This command sets the solar wind parameters for the Weimer model. The solar wind parameters are constant
if this command is used

#MHD INDICES command

#MHD_INDICES

IMF.dat NameUpstreamFile

Read the IMF from a file. Unlike the SOLARWIND command, the IMF can be time dependant in this case.

6.1.3 Control

#END command

#END

The #END command signals the end of the included file or the end of the PARAM.in file. Lines following
the #END command are ignored. It is not required to use the #END command. The end of the included
file or PARAM.in file is equivalent with an #END command in the last line.

#STARTTIME command

#STARTTIME

2006 iYear

7 iMonth

19 iDay

0 iHour

0 iMinute

0 iSecond

The STARTTIME command sets the integer year, month, day, hour, minute and second at which the
simulation begins. This command is only used in standalone mode.

#STOP command

#STOP

10 Tmax

-1 MaxStep

The #STOP command sets the stopping condition for the PWOM during standalone execution. Tmax
sets the stop time in timeaccurate mode. and MaxStep sets the maximum number of iterations for non-
timeaccurate mode.

26 CHAPTER 6. COMPLETE LIST OF INPUT COMMANDS

6.1.4 Physics

#FLUIDPWI command

#FLUIDPWI

T UseFluidPWI

Use wave-particle interaction for the fluid version of PWOM. Default is false.

#FAC command

#FAC

F UseJr

UseJr determines whether to use field aligned currents to affect the ion outflow. The default is shown.

#STATICATMOSPHERE command

#STATICATMOSPHERE

T UseStaticAtmosphere

To keep the MSIS atmosphere constant set UseStaticAtmosphere to True.

#MSISPARAM command

#MSISPARAM

60 F107

60 F107A

4 AP1

4 AP2

4 AP3

4 AP4

4 AP5

4 AP6

4 AP7

This command sets the MSIS parameters for the the neutral atmosphere. The defaults are shown.

#SE command

#SE

T DoCoupleSE (rest is read if true)

T UseFeedbackFromSE

F IsVerboseSE

120 DtGetSe

#SE commands DoCoupleSE and UseFeedbackFromSE tells if you should include SE coupling (works for
Earth and Jupiter) and if feedback should be included. IsVerboseSE option tells if SE should write lots of
output (good for debugging one line) or run quietly (good for lots of lines). DtGetSe tells how frequently
SE should be called.

6.1. INPUT COMMANDS FOR THE PWOM: PW COMPONENT 27

#SETPRECIP command

#SETPRECIP

T UseFixedPrecip (rest is read if true)

100.0 PrecipEnergyMin[eV]

1000.0 PreciptEnergyMax[eV]

400.0 PrecipEnergyMean[eV]

2.0 PrecipEnergyFlux[ergs/cm2/s]

Sets electron precipitation from a given distribution at the top of the simulated magnetic field line. In PWOM
stand alone mode UseFixedPrecip define if we include precipitation, for coupled runs the precipitations is
given by IE module. In the case of coupled runs you can force all field lines to have the same precipitations
with UseFixedPrecip. The precipitation is defined as a Maxwell energy spectrum covering energies between
PrecipEnergyMin and PreciptEnergyMax with mean energy of PrecipEnergyMean. The inflow precipitation
flux at the top of the field line is given by PrecipEnergyFlux. See also #POLARRAIN.

Default is UseFixedPrecip false.

#POLARRAIN command

#POLARRAIN

T UsePolarRain (rest is read if true)

80.0 PolarRainEMin[eV]

300.0 PolarRainEMax[eV]

100.0 PolarRainEMean[eV]

1.0e-2 PolarRainEFlux[ergs/cm2/s]

Sets a constant electron precipitation from a given distribution at the top of the simulated magnetic field
line Applied to all field lines. The precipitation is defined as a Maxwellian energy spectrum covering ener-
gies between PolarRainEMin and PolarRainEMax with mean energy of MeanPolarRainEMean. The inflow
precipitation flux at the top of the field line is given by PolarRainEFlux. See also #SETPRECIP.

Default is UsePolarRain false.

Index

CON
#AURORA, 24
#END, 25
#FAC, 26
#FIELDLINE, 23
#FLUIDPWI, 26
#HPI, 24
#LIMITER, 21
#MHD INDICES, 25
#MOTION, 22
#MSISPARAM, 26
#NGDC INDICES, 24
#NOAAHPI INDICES, 24
#PLOTENERGYGRID, 24
#POLARRAIN, 27
#REGRID, 22
#RESTART, 23
#ROTATION, 22
#SAVEPLOT, 23
#SAVEPLOTELECTRODYNAMICS, 24
#SCHEME, 21
#SE, 26
#SETPRECIP, 27
#SOLARWIND, 25
#STARTTIME, 25
#STATICATMOSPHERE, 26
#STOP, 25
#TEST, 23
#TIMEACCURATE, 22
#TIMESTEP, 22
#TYPEPLOT, 23
#VARIABLEDT, 22
#VERTICALGRID, 22

28

