
BATS-R-US and CRASH User Manual

CSEM and CRASH team

July 6, 2025

2

Contents

1 Introduction 5
1.1 Acknowledgments . 6
1.2 Web Pages for BATS-R-US and CRASH . 6

2 Using BATS-R-US and CRASH 7
2.1 Quick Start . 7

2.1.1 Installing the code . 11
2.1.2 Testing the code . 12
2.1.3 Configuring BATS-R-US . 12
2.1.4 Compilation options . 13
2.1.5 Compilation . 14
2.1.6 Creating a run directory . 14
2.1.7 Creating input files . 15
2.1.8 Running the code . 16
2.1.9 Restarting the run . 16
2.1.10 Postprocessing . 17
2.1.11 Recompilation and clean up . 18

2.2 Hardware and Software Requirements . 18
2.2.1 Source Code and Compilers . 18
2.2.2 Parallelism, Speed Up and Scaling . 18
2.2.3 Memory and Disk Requirements . 18

2.3 Installation and Compilation . 19
2.3.1 Directory Structure . 19
2.3.2 Setting Grid Structure Before Compiling BATS-R-US . 20
2.3.3 The Main Makefile . 23
2.3.4 Compiler Flags . 24
2.3.5 Run Directory Structure . 24

2.4 Running a Simulation . 26
2.4.1 Before Running the Code . 26
2.4.2 Interactive Execution . 26
2.4.3 Queues and Scripts . 27

3 Input Parameters 29
3.1 PARAM.in . 29
3.2 Included Files, #INCLUDE . 29
3.3 Commands, Parameters, and Comments . 30
3.4 Sessions . 30
3.5 The Order of Commands . 31
3.6 Command Defaults . 32

3

4 CONTENTS

3.7 Iterations and Frequency of Output . 33
3.8 Input Commands for the BATSRUS: GM, EE, SC, IH and OH Components 38

3.8.1 Stand alone mode . 38
3.8.2 Planet parameters . 41
3.8.3 User defined input . 44
3.8.4 Testing and timing . 45
3.8.5 Initial and boundary conditions . 49
3.8.6 Grid geometry . 65
3.8.7 Initial time . 69
3.8.8 Time integration . 70
3.8.9 Implicit parameters . 74
3.8.10 Stopping criteria . 79
3.8.11 Output parameters . 80
3.8.12 Eruptive event generator . 103
3.8.13 Amr parameters . 106
3.8.14 Scheme parameters . 117
3.8.15 Coupling paramaters . 132
3.8.16 Pic coupling . 136
3.8.17 Physics parameters . 140
3.8.18 Corona specific commands . 152
3.8.19 Threaded low solar corona . 158
3.8.20 Heliosphere specific commands . 160
3.8.21 Wave specific commands . 162
3.8.22 Particles . 162
3.8.23 Script commands . 163

4 Output files 165
4.1 Restart files . 165

4.1.1 Conversion of binary restart files with ConvertRestart.pl . 166
4.2 Logfiles . 166
4.3 Satellite Files . 167
4.4 Plotfiles . 167
4.5 Postprocessing the IDL plot files . 168

4.5.1 Conversion of binary .out files with FixEndian.pl . 169
4.6 Postprocessing the TEC plot files . 169

5 Visualization 175
5.1 Tecplot . 175
5.2 IDL . 175
5.3 MATLAB . 175
5.4 Julia . 176
5.5 VisIt . 176
5.6 ParaView . 176
5.7 Python . 176

6 The Synoptic Solar Wind Model 177
6.1 General Description of the Model . 177
6.2 The potential field approximation . 177
6.3 Semi-empirical Model for the Solar Wind . 180
6.4 Model Parameterization . 182

Chapter 1

Introduction

BATS-R-US stands for Block Adaptive Tree Solar-wind Roe Upwind Scheme. This name, while not complete in
describing the code, especially in its newer incarnations, points out some of BATS-R-US’ main features. Specifically,
BATS-R-US originally solved the MHD equations using a finite volume upwind Roe-type scheme. Currently there
are several different solvers available. The computational region in BATS-R-US is made up of logically Cartesian
blocks of cells that can be adaptively refined to give higher resolution in a restricted part of the domain. The division
of blocks into smaller blocks creates a tree like structure of blocks, where a divided block has eight children (in 3D),
and the blocks are connected to other blocks much like the branches of a tree. Finally, BATS-R-US is most commonly
run to model the solar wind interaction with solar system bodies.

More recently, BATS-R-US has been extended for high energy density plasma (HEDP) applications. While the
code is essentially the same, the applications are drastically different, so the code used for HEDP is named CRASH
(Code for Radiative Shock Hydrodynamics) and the corresponding development is supported and carried out by the
Center for Radiative Shock Hydrodynamics.

The BATS-R-US (CRASH) code is a first principles hydrodynamic (HD) and magnetohydrodynamic (MHD)
model which has been used to simulate the Earth’s magnetosphere, the solar convection zone, corona, inner and
outer heliospheres, the magnetosphere of most of the planets, several moons and various comets. The code can be
extended for use to any problem for which the hydrodynamic and MHD equations are a reasonable physical model.
The CRASH code is used to model radiative shocks generated by extremely strong laser pulses in laboratory plasmas.

The BATS-R-US code is the most important building block of the Space Weather Modeling Framework (SWMF).
The SWMF executes and couples a number physics models, components as a single model. BATS-R-US is used
in multiple roles in SWMF: it can model the Solar and Lower Corona (SC and LC components), the Inner and Outer
Heliosphere (IH and OH components) and the the Global Magnetoshere (GM component). A lot of effort was spent on
making sure that the very same source code, scripts, test suites and makefiles are used in the stand alone BATS-R-US
and in the various components. We tried to change the behavior of the standalone version as little as possible.

This document is aimed at providing the user detailed information about installation, compilaton and execution
of the code, and how one can change the physical and numerical parameters to achieve the desired result. The tools
provided for visualization are also described.

The physics and the numerics contained in the code are described in the DESIGN document. That document
should help the user understand the design philosophy behind the code, the available physics that the code contains
and the numerical algorithms that make the code work. This document may not be fully up-to-date regarding soft-
ware implementation. For more detailed description of the equations and algorithms read the published papers. A
review paper describing both the SWMF and BATS-R-US is Toth et al., 2011, Journal of Computational Physics,
doi:10.1016/j.jcp.2011.02.006. The algorithms of the CRASH code are described by van der Holst et al., 2011, Astro-
physical Journal Supplements, doi:10.1088/0067-0049/194/2/23. Both papers contain numerous references to earlier
publications.

5

6 CHAPTER 1. INTRODUCTION

1.1 Acknowledgments
BATS-R-US was developed at the University of Michigan starting in 1996 with funding under the NASA High Perfor-
mance Computing and Communications (HPCC) Earth and Space Sciences (ESS) program (NASA ESS Cooperative
Agreement Number: NCCS5-146). Continued work is funded by various grants from NFS, NASA, AFOSR, DoD,
and for the CRASH code by DoE. The Center for Space Environment Modeling is lead by Tamas Gombosi, while the
Center for Radiative Shock Hydrodynamics is lead by Paul Drake.

Contributions to the development of BATS-R-US fall roughly into three categories: theoretical development, code
development and scientific investigations. The principle players and their involvement is as follows:

Principle Investigators and Theory
Tamas Gombosi 1994- Principle Investigator, MHD theory
Aaron Ridley 2007- Principal Investigator, magnetospheric physics
Paul Drake 2008- Principal Investigator, radiative shock theory
Ken Powell 1994- Co-Principle Investigator, numerics and algorithm development
Quentin Stout 1994- Co-Principle Investigator, parallel architecture and computer science

BATS-R-US/CRASH Code Development
Darren DeZeeuw 1996-
Hal Marshall 1996-1998
Clinton Groth 1997-1999
Gabor Toth 1999-
Igor Sokolov 2001-
Bart van der Holst 2008-
Lars Daldorff 2010-

Code Development and Science
Aaron Ridley 1999- Magnetosphere
Gabor Toth 1999- Magnetosphere, Extended MHD, CRASH
K.C. Hansen 1999- Planets, Moons, Comets
Chip Manchester 2000- Eruptive Events, Corona, Helioshpere
Ilia Roussev 2001-2004 Corona, Heliosphere
Igor Sokolov 2001- Corona, Heliosphere, CRASH
Bart van der Holst 2008- Eruptive Events, Corona, Heliosphere, CRASH

1.2 Web Pages for BATS-R-US and CRASH
The web page of the Center for Space Environment Modeling can be found at

http://csem.engin.umich.edu/

The web page of the Center for Radiative Shock Hydrodynamics is at

http://aoss-research.engin.umich.edu/crash/

The SWMF, which includes BATS-R-US/CRASH, is publicly available at

http://csem.engin.umich.edu/swmf

Chapter 2

Using BATS-R-US and CRASH

2.1 Quick Start
The installation instructions are described in the README.md file. To keep this user manual more up-to-date and
consistent, the README.md file is quoted verbatim below.

Copyright (C) 2002 Regents of the University of Michigan,
portions used with permission.
For more information, see http://csem.engin.umich.edu/tools/swmf

This document outlines how to install the stand-alone BATSRUS code
on your system and how to create and access the documentation.
Note that BATSRUS is part of the SWMF. If you already have the SWMF,
you can use BATSRUS inside the SWMF to build the stand-alone BATSRUS code.

To learn more about the BATSRUS, including how to compile and run the code,
please consult the user manual. To install the BATSRUS and create the
user manual please follow the instructions below.

Obtain BATSRUS

Get the full source code from GitHub/SWMFsoftware after
uploading your machine’s ssh key to github.

The minimum requirement is the ‘BATSRUS‘ repository.

Getting SWMF from GitHub/SWMFsoftware

Read the
[Git instructions](https://github.com/SWMFsoftware/SWMF/blob/master/doc/Git_instructions.pdf)
about (optional) registration, passwordless access, mail notifications, and
using the [gitclone](https://github.com/SWMFsoftware/share/blob/master/Scripts/gitclone) script.

Clone the BATSRUS repository

‘‘‘
cd {where_you_want_to_have_batsrus}
gitclone BATSRUS
‘‘‘

7

8 CHAPTER 2. USING BATS-R-US AND CRASH

You may also need the open-source ‘SWMF_data‘ repository that contains
large data files in GM/BATSRUS and SC/BATSRUS subdirectories for BATSRUS.
The other subdirectories in SWMF_data can be removed to save disk space.
The ‘SWMF_data‘ should be put into the home directory:

‘‘‘
cd
gitclone SWMF_data
‘‘‘

Some data files used by the Center for Radiative Shock Hydrodynamics (CRASH)
are in the ‘CRASH_data‘ repository that is available to registered users.
If needed, it has to be placed into the home directory.

Clone the CRASH_data repository into the home directory if needed
‘‘‘
cd
gitclone CRASH_data
‘‘‘

Install BATSRUS

Many machines used by UofM are already recognized by the
‘share/Scripts/Config.pl‘ script, which is called by the ‘Config.pl‘
scripts in BATSRUS.
For these platform/compiler combinations installation is very simple:
‘‘‘
cd BATSRUS
./Config.pl -install
‘‘‘
On other platforms the Fortran (and C) compilers should be explicitly given.
To see available choices, type
‘‘‘
./Config.pl -compiler
‘‘‘
Then install the code with the selected Fortran (and default C) compiler, e.g.
‘‘‘
./Config.pl -install -compiler=gfortran
‘‘‘
A non-default C compiler can be added after a comma, e.g.
‘‘‘
./Config.pl -install -compiler=mpxlf90,mpxlc
‘‘‘
For machines with no MPI library, use
‘‘‘
./Config.pl -install -nompi -compiler=....
‘‘‘
This will only allow serial execution, of course. Like with most scripts
in the SWMF/BATSRUS, type
‘‘‘
./Config.pl -help
‘‘‘
for a comprehensive description of options and examples.

The ifort compiler (and possibly others too) use the stack for temporary

2.1. QUICK START 9

arrays, so the stack size should be large. For csh/tcsh add the following
to ‘.cshrc‘:
‘‘‘
unlimit stacksize
‘‘‘
For bash/ksh/zsh add the following to ‘.bashrc‘ or equivalent initialization
file:
‘‘‘
ulimit -s unlimited
‘‘‘

Create the manuals

Please note that creating the PDF manuals requires that LaTeX
(available through the command line) is installed on your system.

To create the PDF manuals for BATSRUS and CRASH type
‘‘‘
make PDF
cd util/CRASH/doc/Tex; make PDF
‘‘‘
in the BATSRUS directory. The manuals will be in the ‘Doc/‘ and
‘util/CRASH/doc/‘ directories, and can be accessed by opening
‘Doc/index.html‘ and ‘util/CRASH/doc/index.html‘. Note that
the CRASH application is only usable in the full SWMFsoftware version.

The input parameters of BATSRUS/CRASH are described in the ‘PARAM.XML‘
in the main directory. This is the best source of information when
constructing the input parameter file and it is used to generate the
"Input Parameters" section of the manual.

Cleaning the documentation
‘‘‘
cd Doc/Tex
make clean
‘‘‘
To remove all the created documentation type
‘‘‘
cd Doc/Tex
make cleanpdf
‘‘‘
As for most Makefile-s in the SWMF/BATSRUS, type
‘‘‘
make help
‘‘‘
for a comprehensive list of make targets and examples.

Read the manuals

All manuals can be accessed by opening the top index file
‘‘‘
open Doc/index.html
‘‘‘
You may also read the PDF files directly with a PDF reader.
The most important document is the user manual in

10 CHAPTER 2. USING BATS-R-US AND CRASH

‘‘‘
Doc/USERMANUAL.pdf
‘‘‘

Running tests

You can try running the standard test suite by typing
‘‘‘
make -j test
‘‘‘
in the main directory. The ‘-j‘ flag allows parallel compilation.
This requires a machine where ‘mpiexec‘ is available.
The tests run with 2 MPI processors and 2 threads by default.
Successful passing of the test is indicated by empty ‘*.diff‘ files.

To run the tests on more (up to 8) cores use
‘‘‘
make -j test NP=4
‘‘‘
You can also run an individual test. The list of available SWMF tests
can be listed with
‘‘‘
make test_help
‘‘‘
For example, to run ‘test_shocktube‘ in a serial mode (without MPI)
but multithreaded with 4 threads (using OpenMP):
‘‘‘
make -j test_shocktube MPIRUN= NTHREAD=4
‘‘‘

Compiling for GPUs

After cloning the BATSRUS repository, the code has to be installed with
‘‘‘
./Config.pl -install -compiler=nvfortran,nvc
‘‘‘
On clusters, load a version of the Nvidia compiler. Some versions may be
unstable. A working version is nvhpc-hpcx/24.5 on the Frontera
supercomputer. A working version on Pleiades is nvhpc-nompi/24.3
paired with mpi-hpe/mpt. Switch on the -acc flag:
‘‘‘
Config.pl -acc
‘‘‘
and test installation with a set of small tests on a single GPU (NP=1):
‘‘‘
make -j test_small_gpu NP=1
‘‘‘
By default, the tests run on 2 GPUs. If all .diff files are empty (0 size)
in the end, it means all tests pass. Other than testing (the command above
includes compilation for various tests), one needs to compile
BATSRUS before running any simulation:
‘‘‘
make -j BATSRUS
‘‘‘

2.1. QUICK START 11

2.1.1 Installing the code
In SWMF the components are installed and uninstalled automatically at the same time as the framework is installed.
The Makefile.def and Makefile.conf make files in GM/BATSRUS will simply include the files with the same name in
the SWMF directory. The rest of this subsection describes the installation procedure for the stand alone code.

The installation requires the selection of a specific Fortran compiler. For many platforms used by CSEM and
CRASH, the script can figure out the default settings all by itself. On these systems, the code can be installed simply
by running the command

Config.pl -install

in the main directory. This

• creates Makefile.def with the correct absolute path to the base directory,

• creates Makefile.conf that contains the operating system and compiler specific part of the Makefile

• creates the compiler specific Makefile.RULES from Makefile.RULES.all in the various source direc-
tories,

• attempts to create a symbolic link data to SWMF data/GM/BATSRUS/data

• attempts to create a symbolic link dataCRASH to CRASH data

• executes make install which does further installation steps specific to BATS-R-US.

If the platform/machine is not listed at the beginning of the

share/Scripts/Config.pl

script, or a non-default compiler is desired, then the compiler must be specified explicitly with the -compiler flag.
Type

Config.pl -compiler

to see available choices. Then install the code with the selected compiler, for example

Config.pl -install -compiler=gfortran

On a Linux system this will copy the

share/build/Makefile.Linux.gfortran

file into Makefile.conf.
In case your platform and/or compiler is not supported yet, you will have to create a

share/build/Makefile.OS.COMPILER

file where ’OS’ is the name of the operating system returned by the Unix command uname, while ’COMPILER’ is
the name of the F90 compiler used or something closely related to that.

To uninstall BATS-R-US type

Config.pl -uninstall

If the uninstallation fails (this can happen if some makefiles are missing) do reinstallation with

Config.pl -install

and then try uninstalling the code again. When BATS-R-US is installed, its configuration can be checked with

Config.pl

with no arguments. To get a complete description of the usage of the Config.pl script type

Config.pl -h

12 CHAPTER 2. USING BATS-R-US AND CRASH

2.1.2 Testing the code
The fastest way of testing the installed code is to run test problems. The full BATS-R-US test suite can be run with

make -j test NP=4

on a machine that allows both compilation and parallel execution. These tests are typically run on 1 to 8 processors,
the default is 2. If only serial execution is available, the tests can be run serially with

make test MPIRUN=

Running the complete test suite can take anywhere from one to several hours depending on the speed and number of
processors, as well as on the speed of the Fortran compiler. The tests are run in the run test * directories, one after
the other.

A test is successful if the results agree with the reference solution to the required accuracy. This is checked by a
script, typically share/Scripts/DiffNum.pl, that compares the output with the reference solution. The test passes if the
resulting difference file is empty. See Makefile.test for details.

The full set of available tests is shown by

make test_help

A specific test can be run by typing, for example,

make -j test_shocktube

This will do a simple shock tube test that takes a few minutes to complete. Like most other tests, this one consists of
4 stages:

1. make -j test shocktube compile: configuration and compilation

2. make test shocktube rundir: create run directory with input files

3. make test shocktube run: run the test

4. make test shocktube check: check the results

These stages can be done separately. For example the code can be configured and compiled and the run directory can
be created on the head node of a super computer, and then the run phase can be done on a compute node, and the
results can be checked on the head node again. The reference solution of the shock tube test is stored in

Param/SHOCKTUBE/TestOutput

and the difference file will be

test_shocktube.diff

2.1.3 Configuring BATS-R-US
The first step is selecting the equation and user modules. For example

Config.pl -e=Hd -u=Waves

will select the hydrodynamics equation module and the ’waves’ user module that can perturb variables with various
waves, which is useful for tests. This is essentially the same as executing

cp srcEquation/ModEquationHd.f90 src/ModEquation.f90
cp srcUser/ModUserWaves.f90 src/ModUser.f90

but using Config.pl is simpler and safer, because the previous user module is saved into src/ModUser.f90.safe
in case it was replaced accidentally. The available equation and user modules can be listed with

2.1. QUICK START 13

Config.pl -e -u

New equation and user modules can be easily added into the srcEquation/ and srcUser/ directories, respectively.
For some equation modules the number of materials and/or wave groups can be set, for example,

Config.pl -e=Crash -nMaterial=3 -nWave=30

will select the CRASH user module and set the number of materials to 3 and the number of radiation energy groups to
30.

The adaptive grid parameters can be set, for example, as

Config.pl -g=4,4,4 -ng=2

This will create 3D grid blocks consisting of 4× 4× 4 cells with 2 ghost cell layers (set by -ng). Note that the number
of grid blocks should be set in the PARAM.in file with the #GRIDBLOCK and #GRIDBLOCKALL commands. The
number of cells per block, however, cannot be changed during run time, which helps the compiler to properly optimize
the inner loops on the grid cell indexes.

If the fifth order scheme is to be used, it requires three ghost cells and at least 6 cells in all used dimension:

Config.pl -g=6,6,6 -ng=3

The grid can also be 2 or even 1 dimensional. For 2D grids the number of cells in the third dimension is 1, for example,

Config.pl -g=10,10,1 -ng=3

will 10×10 grid cells with 3 ghost cell layers in 2 spatial dimensions. For 1D grids both the second and third numbers
are 1, e.g.,

Config.pl -g=100,1,1 -ng=2

The current grid settings can be inquired with

Config.pl -g

which shows it in the same compact format. A more verbose and complete configuration information can be obtained
with

Config.pl -s

2.1.4 Compilation options
Check the SWMF test page for the currently used/recommended compiler versions on the various machines. On many
systems the module command can be used to see the currently loaded compilers (module list), the available
compiler versions (module avail) and to unload old and load new versions (module unload SOMETHING
and module load SOMETHINGELSE).

The optimization level can be set, for example, with

Config.pl -O2

For debugging it is best to use

Config.pl -O0 -debug

The NAG Fortran compiler is especially powerful for debugging, as it can check for uninitialized real variables and it
provides line numbers for any failure of the code. In some cases the MPI library does not allow the error messages to
show up on the terminal. If the problem can be reproduced with a serial run, it is best to set

Config.pl -O0 -debug -nompi -noopenmp

14 CHAPTER 2. USING BATS-R-US AND CRASH

The -nompi flag will compile the util/NOMPI library and modifies Makefile.conf so that the code is linked
with the NOMPI library instead of the real MPI library. The code compiled with the NOMPI library can only be run
in serial mode, however, debugging can become much easier. The -noopenmp flag disables compiling the OpenMP
directives and the use of the OpenMP library for multi-threaded runs.

To undo these settings, for production runs, use

make clean
Config.pl -O4 -nodebug -mpi -openmp

Note that make clean is necessary when the optimization level or debugging flags are changed. If only the
NOMPI is replaced with the usual MPI library (or the other way around), it is sufficient to delete the executable,
e.g. src/BATSRUS.exe, and simply relink the code using make.

The code can be compiled with single precision using Config.pl -single, but this is neither recommended
nor supported. On 64-bit platform the default double precision executes almost as fast as the single precision, and the
enhanced arithmetic accuracy is required by many algorithms. The single precision option wiil likely be removed in
the future.

2.1.5 Compilation
Once the compilation options are set, compile BATS-R-US with

make -j

in the main directory. This will produce the executable src/BATSRUS.exe. The CRASH code, which is BATS-R-
US compiled together with the util/CRASH library, can be created with

make -j CRASH

and the executable will be src/CRASH.exe.
For post-processing IDL output, the executable src/PostIDL.exe have to be compiled with

make PIDL

The multiple snapshots included in a single IDL output file can be manipulated with the src/SNAPSHOT.exe code,
which can be compiled with

make SNAPSHOT

2.1.6 Creating a run directory
The next step is to create a run directory with

make rundir

This will create a directory named run/. This can be renamed or even moved to another disk (e.g. the scratch disk of
a super computer), if necessary. The name of the run directory can also be specified like this

make rundir RUNDIR=/scratch1/MYSELF/run15

Note that an absolute path is used. In some cases it is useful to create a run directory that mimics the use of BATS-R-US
as some specific component of the SWMF. For example, for the solar corona component use

make rundir COMPONENT=SC

This will create a run/SC subdirectory instead of the usual run/GM subdirectory.
The freshly created run directory contains several files, symbolic links, and directories. The most important one is

a link to the executable BATSRUS.exe. If the run directory is created with

2.1. QUICK START 15

make rundir DEFAULT_EXE=CRASH.exe

then it will contain a link to the CRASH.exe code. There are also links to the PostIDL.exe and PostSPH.exe codes
used for post-processing the output. It is often a good idea to remove the links and copy the executables into the
run directory. This allows recompiling the code without having a possibly unwanted effect on the run directory, or a
submitted run that is still in the job queue.

The IO2 subdirectory will contain the output files, while the restartIN and restartOUT subdirectories are used for
input and output restart files, respectively. The PostProc.pl, pIDL, pTEC, and Restart.pl scripts are copied into the
run directory to allow processing the output files and restarting the code. The link to the PostIDL.exe code is for
postprocessing.

If the machine name (disregarding numbers at the end of the name) matches one of the job files in

share/JobScripts

then the job file will be copied into the run directory. For example, on pfe8 (one of the head nodes of Pleiades),
the job.pfe job script file and the qsub.pfe.pl and watch.pfe.pl scripts will be copied. The job script file
serves as a template only. It has to be edited and modified before submitting a job. On Pleiades the qsub.pfe.pl
script can be used to submit jobs for multiple node types, see the help message (-h) for details.

2.1.7 Creating input files

The run directory also contains a ”default” PARAM.in file, but this should always be replaced with another file, in
practice. The link to the BATSRUS/Param directory is provided, so that the files in this directory can be copied into
PARAM.in as a starting point. Some of the files contain small segments of the input file, e.g. the grid description for
some application. These segments can also be included into PARAM.in with the #INCLUDE command.

It is important to check the correctness of the input file, especially before submitting large jobs on a super computer.
In the main BATS-R-US directory type

CheckParam.pl

which will check run/PARAM.in. The number of processors to be used and the name of the input parameter file can
also be specified, for example

CheckParam.pl -n=256 run_large/PARAM.in

Another way to construct and check the PARAM.in file is to run the parameter editor (this can be done best on
your local desktop or laptop machine):

share/Scripts/ParamEditor.pl

This will open run/PARAM.in in a web browser with a user interface. The name of the parameter file can also be
specified, e.g.,

share/Scripts/ParamEditor.pl run_large/PARAM.in

The parameter editor provides an integrated user interface with manual, editing, and checking options.
The PARAM.in file is always required for a run. Several applications read additional files, for example for initial-

ization, boundary condition, satellite trajectories to extract data, and in case of a restarted run, restart files. These all
have to be in place before the code is run. The parameter checking also checks for the existence of many of these input
files.

16 CHAPTER 2. USING BATS-R-US AND CRASH

2.1.8 Running the code
Now you are ready to run the code. For an interactive run on 8 processors with 4 threads (if the code was compiled
with an MPI library and OpenMP enabled) type

cd run
export OMP_NUM_THREADS=4; mpiexec -np 8 BATSRUS.exe # bash, ksh, zsh
setenv OMP_NUM_THREADS 4; mpiexec -np 8 BATSRUS.exe # csh, tcsh

It is often a good idea to save the output and error messages into a file, both for runs done interactively and in the
background:

mpiexec -np 8 BATSRUS.exe |& tee runlog
mpiexec -np 8 BATSRUS.exe >& runlog &

Using runlog as the filename allows the PostProc.pl script to find it and collect it together with other output
files.

On many machines you have to submit the run to a batch queue. First edit the appropriate job script file and then
submit the job, for example on Pleiades

cd run
emacs job.pfe
./qsub.pfe.pl job.pfe Run8

The content of the job scripts and submission commands depend on the queuing system.

2.1.9 Restarting the run
There are several reasons for restarting a run

• a run may be too long for a single job submission,

• a run may fail for some reason, and it can be restarted with different parameters,

• a parameter study is done with varied parameters starting from the same state,

• debugging some problem that happens a few steps after the restart.

The Restart.pl script makes it quite easy to restart a run. Assuming that there are restart files saved, simply type

Restart.pl

in the run directory. This will move the files from the restartOUT directory into a restart directory tree, and the files
in the restart directory tree will be linked to the restartIN directory. The default name of the restart directory tree
is based on the simulation time for time accurate runs, or the number of iterations for steady state runs. For example,
if the restart files were saved at 6 hours of simulation time, the restart directory will be named

RESTART_t006.00h

The name of the restart tree can also be specified, e.g.,

Restart.pl RESTART_debug

It is also possible to select an already existing tree, e.g. something that was saved by PostProc.pl (see next subsection):

Restart.pl -i NewResults/RESTART

By default the restart files overwrite each other, however, the Restart.pl script can create multiple trees while the
code is running, by simply checking if there are new restart files in restartOUT and moving those into a tree. For
example

2.1. QUICK START 17

Restart.pl -r=600 -t=h &

will check for new restart files every 600 seconds (wall clock time), and the restart trees will be named using hours as
time units. To read about more options, type

Restart.pl -h

2.1.10 Postprocessing
After the code has successfully run (possibly with multiple restarts) the output files found in run/IO2 need some
post processing before they can be visualized. The most convenient way to do this is to run

PostProc.pl

in the run directory. This will process both IDL and Tecplot output files. For long runs it is a good idea to periodically
post process the output, e.g.,

PostProc.pl -r=600 >& PostProc.log &

will post process the output every 600 seconds, and the various output (and possibly error) messages will be collected
into the PostProc.log file.

When the run is finished, the IDL output files can be merged into a single “movie” file with the -M switch, while
the logfiles and satellite output files from multiple restarts can be concatenated using the -cat swithc:

PostProc.pl -M -cat

When the run is complete, it is a very good idea to create an output directory tree that contains the PARAM.in file,
the runlog file, the plot files as well as restart files together. This can be done by providing the name of the directory
tree as an argument:

PostProc.pl -M -cat RESULTS/latest

When there are a huge number of output files to process, the post processing can become slow. The post processing of
the IDL files can be done in parallel on multicore machines using the -n switch

PostProc.pl -n=4

This can also be combined with the -r switch for continuous post-processing when the serial post processing cannot
keep up with the amount of data produced by the running job. The complete set of options can be obtained with

PostProc.pl -h

There are several lower level scripts that can be used directly if desired. For example the IDL output files can be
processed with

pIDL

This command will produce the new run/IO2/*.out files, and delete the run/IO2/*.idl files and the corre-
sponding header files run/IO2/*.h. In case you want to keep the raw data, e.g. to be safe, type

pIDL -k

For complete usage information type pIDL -h.
The Tecplot files are processed with the pTEC script. See pTEC -h for options.
Visualization of the resulting output files with IDL and TecPlot will be described in detail in sections ?? and ??,

respectively.

18 CHAPTER 2. USING BATS-R-US AND CRASH

2.1.11 Recompilation and clean up
If you change some source files, e.g. the user module src/ModUser.f90, the code can be simply recompiled with
the make command. However, if the compiler flags or the precision are changed, you need to clean the object files
with

make clean

before recompilation. This will remove all the object files and forces recompilation.
To delete all files created during installation and compilation, use

Config.pl -uninstall

In addition to the object files, this command will remove the executables src/*.exe, the libraries src*/*.a and
all other temporary files.

For a complete list of possible make targets type

make help

2.2 Hardware and Software Requirements

2.2.1 Source Code and Compilers
BATS-R-US is written completely in standard Fortran 90 with calls to standard MPI libraries. You must assure that
both of these are available in order to use BATS-R-US. Compilers seem to be readily available for F90, although
there are very few free F90 compilers. Most parallel machines have MPI libraries in residence, although most Linux
distributions do not include F90 versions of the MPI libraries. The code has been run with the free distribution of the
MPI-CH libraries under Linux. BATS-R-US has been run successfully on the following platforms: Cray T3E, IBM
SP, SGI Origin, Altix, Darwin (Mac OS) and several different Beowulf clusters.

If the user wishes to run BATS-R-US on a single node, no MPI libraries are required to be in residence. The user
must make the NOMPI library which is included in the util/NOMPI utility (see section 2.3.3)

2.2.2 Parallelism, Speed Up and Scaling
While it is designed to run on massively parallel platforms, the code will run on any number of nodes from a single
processor to as many as the user has access to. We have run BATS-R-US on up to half a million CPU cores using a
hybrid MPI + OpenMP approach. As described in the DESIGN document, blocks are distributed on different proces-
sors and must communicate with each other through message passing. The communication time between processors,
or latency, will have an effect on the efficiency of the code.

Two ways to measure a code’s performance are to look at “speed up” or strong scaling and “weak scaling”. Speed
up is measured by taking a fixed size problem and running it on more processors. If the code runs twice as fast when
run on twice as many processors then the code has perfect speed up. Communication time is likely a major part of the
work load if more processors does not mean more speed. Scalability is measured by doubling the size of the problem
and the number of processors at the same time and asking if running the code takes the same amount of time as before.
Both are important measures of code performance.

2.2.3 Memory and Disk Requirements
BATS-R-US is a block based simulation code (see the DESIGN document) and as such, memory requirements are
most easily discussed in terms of the number of blocks in a simulation.

To establish the computation requirements needed to run the code, the user must determine how large of a sim-
ulation region and what resolution is needed for that run. This will establish the total number of simulation blocks
needed, which will in turn determine the memory requirements of the system. Table 2.1 gives examples of a number

2.3. INSTALLATION AND COMPILATION 19

Table 2.1: Examples of memory requirements for some commonly run simulation types.
Simulation Number of Bytes Minimum Number Maximum Number Total Memory

for a Real Number of cells of cells for Maximum
Saturn 8 600,000 1,000,000 6.6 GB
Heliosphere 8 500,000 2,000,000 13.2 GB
Earth 8 250,000 1,000,000 6.6 GB
Earth 4 250,000 1,000,000 3.3 GB

of different simulations which are commonly run, and their memory requirements. Note that the memory requirement
depends on the size of real numbers used at compilation time. This can be changed by changing compile flags in the
makefiles. For a 4 byte real, each 4x4x4 cell block takes approximately 0.2 MB of memory. For an 8 byte real, each
4x4x4 cell block takes approximately 0.4 MB of memory. The trade-off between the two are discussed in section 2.3.4.

For example, simulations of the Earth’s magnetosphere are typically run with between 250,000 cells and 1,000,000
cells and with a 4x4x4 grid structure within each block. This means that the simulations are run with between 4000
and 16000 blocks. Using a 4 byte real number, each block takes approximately 0.2 MB of memory. Therefore the
simulations would require between 850 and 3300 MB of memory. This memory can obviously be distributed across
all of the CPUs which are available to the run. So, if these runs were conducted on a 16 node computer, each node
would have to have approximately 200 MB of memory (for the large run). On a different computer, the memory per
node would scale accordingly.

The amount of disk space required to run the code varies dramatically between different types of simulations, time
and spatial resolution required, and the number of variables to be saved for plotting. Specifically, users need to be
aware of the size of restart files and the size of output files for plotting.

Restart files, used to restart the code from the middle of a simulation, store the entire three dimensional cell
centered data used by the code. Because the code has other overhead, this number is smaller than the memory needed
when actually running the code. The restart files are roughly one tenth (1/10) the size of the code image in memory.

Output files for plotting vary greatly in size depending on the nature of the output and the frequency of the output.
Full 3-D output files of the entire simulation domain, not yet post processed, can be a factor of 2 or more larger than
the restart files because they contain more variables and are not binary. One common method for saving disk space is
to only write out cut planes and not the full 3-D simulation region. This has the advantage of saving vast amounts of
disk space, but reduces the amount of physical insight which can be gained from the simulation. Typical (binary) cut
plane files are approximately 1.0 MB once they are post processed. The biggest influence on the amount of memory
required is the frequency at which plot files are written during a run. Clearly, if data is output often (say every 1-30
seconds of simulation time of a 10 hour simulation), the amount of data can grow astronomically.

2.3 Installation and Compilation

2.3.1 Directory Structure
Upon installing BATS-R-US, you should find the following files and directories inside the main BATS-R-US directory.
The subdirectories are included without listing all of the files that they contain.

File or Directory: Notes:

Config.pl Script to (un)install and configure the code
Configure.pl Script to configure the source code
Configure.options Default configuration options
Doc/ Documentation

Tex/ Latex source code for documentation
HTML/ HTML form of the documentation

Idl/ Source code for IDL post processing

20 CHAPTER 2. USING BATS-R-US AND CRASH

Makefile Main makefile
Makefile.def Place holder for the configured Makefile.def
PARAM.XML Description of input parameters in text and XML
PARAM.pl PARAM.XML converted to a Perl file
Param/ Sample PARAM.in files, include files
Scripts/ Contains scripts to run the code on

ConvertRestart.pl Script to convert the endianness of restart files
IDL/ Scripts used to process IDL files
Run/ Scripts used to run BATSRUS and process output

AIX/ -IBM SP
Darwin/ -Macintosh
IRIX/ -SGI Origin
IRIX64/ -SGI Origin
Linux/ -Linux (Beowulf clusters, SGI Altix)
OSF1/ -Compaq

TEC/ Scripts used to process TECPLOT files
share/ Scripts and source code shared with SWMF
src/ Source code for BATSRUS
srcInterface/ Source code for interfaces with other components
srcPostProc/ Post processing source code
TestBatsrus.pl Script to test BATSRUS
TestCompare.pl Script to compare test results
TestCovariant Script to test BATSRUS in ’covariant’ configuration
TestParam.pl Script to test the input parameter file
TestSuite.pl Script to run a whole test suite
util/ Utilities NOMPI and TIMING shared with SWMF

2.3.2 Setting Grid Structure Before Compiling BATS-R-US
Part of the design of BATS-R-US is the conscious decision to limit the usage of allocateable variables. This is because
allocateable memory was found to slow the code considerably and the choice was made to maximize code speed. This
means that the most of the arrays of BATS-R-US must be dimensioned with a fixed size in the source code. Since
platforms vary widely, there is no way to set these in a universal way and the user will have to set them. There are two
main sets of parameters that must be changed.

Number of Blocks per Processor: nBLK

As described in the DESIGN document, the main unit of mesh used for computation in BATS-R-US is the Cartesian
block. The major part of memory is dimensioned in this block structure. Therefore, the number of blocks basically
determines the amount of memory the code will use. The number of blocks that any given processor can handle
depends on the amount of memory that each node has available and must be changed in the file src/ModSize.f90.
This is normally done with the Config.pl script. The maximum number of blocks is defined by the variable nBLK.

Number of Cells in Each Block: nI, nJ, nK

Typically, BATS-R-US is run with blocks that are cubes, but this does not have to be the case. The size of blocks is
determined in ModSize.f90 by the parameters nI, nJ, nK, the numbers of cells in a block in each dimension. This
number does not include ghost cells which the code takes care of automatically. The user should set these numbers
with the Config.pl script according to their needs based on the following restrictions.

• nI,nJ,nK variables should not be less than 4 and must be set as even integers (4, 6, 8, 10 ...). If the grid is
uniform (all cells the same size) the code should run with nI,nJ,nK set to 2.

2.3. INSTALLATION AND COMPILATION 21

• Smaller blocks means a larger ratio of ghost cells to computational cells. For example a 4x4x4 block has a 64
cell computation region, while it has 8x8x8 = 512 total cells counting ghost cells. In other words, the majority
of the storage is ghost cells (#Ghost/#Computation = 7). If the user used 8x8x8 blocks, the computation region
would have 512 cells while the total number of cells is 1728 and the ratio of ghost cells to computation cells is
only 2.4.

• The time the code spends message passing depends on the number of ghost cells in a block and on the number
of blocks. With larger blocks the message passing time may be reduced.

• Larger blocks mean more wasted cells when doing AMR to resolve features of the solution. If the user uses
4x4x4 block he or she will have much better control over where the resolution is located. With larger blocks the
user will have to resolve a larger area to get the interesting area resolved.

The user should note that as usual, in numerical simulations there is a trade off in efficiency in resolving the solution
and the amount of storage. In general, larger blocks mean less “wasted” storage but will inevitably lead to more cells
to resolve the same features.

Getting the Grid you Want

The initial grid (before any refinement) contains a number of blocks determined by the proc dims(i) variable,
where i is the direction (1=x, 2=y, 3=z). If the values are set to

proc_dims(1) = 2
proc_dims(2) = 1
proc_dims(3) = 1

then the top level blocks form a brick consisting of 2 blocks arranged along the x axis. This variable is called
proc dims because in the original design of BATS-R-US the initial number of blocks could not exceed the number
of processors. In the current version there is no such restriction, and the name is kept for historical reasons only.
A more descriptive name would be nRootBlock D which refers to the number of root blocks in the 3 coordinate
directions.

The sizes of cells in these top level blocks is determined by the initial number of blocks and also by the physical
size of the computational domain and the values of nI, nJ, nK. As an example, we show a section of the input
parameters used when running the code

#GRID
4 nRootBlockX
2 nRootBlockY
1 nRootBlockZ
-32. xMin
32. xMax
-8. yMin
8. yMax
0. zMin
4. zMax

These input parameters, along with nI,nJ,nK define the initial grid used in the simulation. The values xMin, xMax,
... indicate the physical domain of the computation. In section 2.3.2 we indicated that the number of cells in a block
in each direction is determined in ModSize.f90. Here we determine the actual shape of the computational domain
as well as the actual shape of each cell. Typically, BATS-R-US is run with cells and blocks that are cubes. While
this is not required, cells that have large aspect ratios may lead to less accurate computations. The shape of a cell is
determined by the nI,nJ,nK, the proc dims and the physical size of each dimension. The size of a cell in the top
level blocks is given by

dx =
xMax− xMin

nRootBlockX ∗ nI
dy =

yMax− yMin
nRootBlockY ∗ nJ

dz =
zMax− zMin

nRootBlockZ ∗ nK
(2.1)

22 CHAPTER 2. USING BATS-R-US AND CRASH

p
ro

c
_
d
im

s
(2

)

proc_dims(1)

nCellsI

n
C

e
lls

J

Figure 2.1: Initial block and grid structure for proc dims of 4x2x1 and nI,nJ,nK of 16x8x4. The z dimension is
not shown. Heavy line indicate blocks, lighter lines indicate individual cells.

We give three examples. First, with 4x4x4 blocks, if the physical dimension of the computation region is a cube, then
setting the initial number of blocks in each dimension (proc dims) equal will ensure cells that are cubes. For the
second example, if one dimension is twice as large as the other two, then beginning with twice as many blocks in this
dimension will again ensure cubic cells. Finally, combining xMin, xMax, yMin, yMax, zMin, zMax, nI, nJ, nK and
proc dims allows the user to make computation regions that are highly stretched in one dimension while still having
cubic cells. If the user wanted to do a two dimensional problem, for example, he or she could choose parameters to
minimize the numbers of cells in 1 dimension. Figure 2.1 shows a 2 dimensional view of a grid defined using the input
shown above and with nI = 16, nJ = 8, nK = 4. In the figure, the dark lines show the locations of blocks, initially
4x2x1 (the z dimension is not shown). This grid would have to be run on at least 8 processors. The The lighter lines
show the individual cells in one of the blocks. These are 16x8x4 (again, the z dimension is not shown). Notice that
the cells are cubes (dx=dy=dz=1.0), but the computation region is stretched in the x and y directions.

THERE IS ONE OTHER RESTRICTION ON THE WAY THAT GRIDS CAN BE CREATED WHEN
USING A CENTRAL BODY. Because the first body is created with its center at the origin, it is important that eight
block corners meet at the origin. The user must think ahead so that the final desired refinement level at the body
satisfies this restriction. While the code may run if this is not that case, Tecplot output will not be correct, initial
refinement may not do what you thought it should and there may be other problems. We give parameters for the
standard Earth case as an example

#GRID
2 nRootBlockX
1 nRootBlockY
1 nRootBlockZ
-224. xMin
32. xMax

-64. yMin
64. yMax
64. zMin
64. zMax

Initially there are two blocks which meet at x=-96. The origin does not lie at block corners. Two refinements of these
initial blocks will create 128 blocks and will give the required corners at the origin. Since this case is never run with a
lower resolution than this we are okay.

2.3. INSTALLATION AND COMPILATION 23

2.3.3 The Main Makefile
The main executable and all the post processing executables along with run directories can all be set up from the main
makefile. This is true for the framework and the stand alone code as well, and the makefile targets are very similar in
both cases. Typing

make help

lists the available executables, directories and scripts which can be built or executed. The rest of this subsection is
specifically about the stand alone code, i.e. the use of the Makefile in the BATS-R-US main directory. In stand alone
mode the help list is the following:

You can ‘‘make’’ the following:

<default> BATSRUS in stand alone mode, help in SWMF

install (create MAKEFILES, src/ModSize.f90, src/mpif90.h)
MAKEFILE_DEF (create/correct Makefile.def)

LIB (Component library libGM for SWMF)
BATSRUS (Block Adaptive Tree Solar-Wind Roe Upwind Scheme)
NOMPI (NOMPI library for compilation without MPI)
PIDL (PostIDL program creates 1 .out file from local .idl files)
PSPH (PostSPH program creates spherical tec file from sph*.tec files)

help (makefile option list)
clean (rm -f *˜ *.o *.kmo *.mod *.T *.lst core)
distclean (make clean; rm -f *exe Makefile Makefile.DEPEND)
dist (create source distribution tar file)

PDF (Make PDF version of the documentation)
HTML (Make HTML version of the documentation)

rundir (create run directory for standalone or SWMF)

mpirun (make BATSRUS and mpirun BATSRUS.exe on 8 PEs)
mpirun NP=7 (make BATSRUS and mpirun BATSRUS.exe on 7 PEs)
mprun NP=5 (make BATSRUS and mprun BATSRUS.exe on 5 PEs)

spherical_src (Make SPHERICAL directory with BATSRUS on spherical grid)
spherical_conf (Make SPHERICAL directory and link it to BATSRUS_conf)
covariant_src (Make COVARIANT directory with BATSRUS on covariant grid)
corelax_src (Make CORELAX directory for the covariant version

of the magnetogram-driven solar wind)
cartesian_src (removes source code for covariant grid)
relax_src (Make RELAX directory for the Cartesian

version of the magnetogram-driven solar wind)

As an example, in order to make BATSRUS.exe, simply type

make

24 CHAPTER 2. USING BATS-R-US AND CRASH

To make a distribution (tar file) of the code like the one used for installation, type

make dist

To make a directory with everything setup to run code

make rundir

The executables reside in the src directory. When a run directory is created it is located in the root directory of the
installation and will have links to the executables, will have copies of the appropriate scripts for the current platform
and will have the directory structure for running the code setup.

The Makefile in the root directory of the distribution calls the different makefiles in the src/, srcPostProc/,
share/ and util/ directories in order to do the actual compilations.

2.3.4 Compiler Flags
The makefile Makefile.conf in the main directory (of SWMF or the stand alone BATS-R-US) contains the system
dependent flags. In this file, the user will find several sets of commented out flags. The default version will be the one
that should be used for running the code to do production type runs. Other sets of flags include those for debugging
(which does more error checking), among others. As mentioned above, compile flags are not trivial to set and if the
user has to change them, they will likely have to consult the manual pages of the F90 compiler.

One main flag, PRECISION determins the number of bytes a real number occupies. On most systems the default
size real is 4 bytes. In the Makefiles, the flag PRECISION can be changed to indicate the number of bytes to use for
a real. When debugging it is often necessary to use 8 byte real to differentiate round off error from true errors. For
production runs, 8 byte reals should be more accurate, but may not always be necessary. Using 8 byte real will double
the size of the code. The trade off is of course loss of some accuracy with 4 byte reals and increased code and restart
file size for 8 byte reals. In addition, on 32 bit machines (such as most PC’s and Suns), the code will run slower (about
30 % on our PC based Beowulf) when using 8 byte reals.

Another compiler flag that the user may need to change is the MPILIB flag. As mentioned in section 2.2.1, the
code can be run on a single processor with our NOMPI library, which the user can make (see section 2.3.3). To run with
this library the MPILIB needs to be changed from calling the system libraries to the NOMPI library. As an example,
the Makefile.IRIX64, is the makefile for the SGI Origin. In this makefile the user will find the following lines:

MPILIB = -lmpi
#MPILIB = -L. -lNOMPI

To use the NOMPI library, the first line must be commented out (place a # in front of the line) and the # should be
removed from the second line. With the NOMPI library the code can run on a single processor only.

2.3.5 Run Directory Structure
The run directory is setup with make rundir. The purpose for creating run directories is to separate runs. You can
rename them

mv run run_CME

to do a simulation of a CME, for example. You can also move the run directory to another directory or disk, but this
is not recommended, because it will be difficult to relate the source code and the actual run.

When /BATSRUS/ is used inside the framework, it gets a subdirectory named by the component. For example if
/BATSRUS/ is used as the SC component, it will read files from and write files into the

run/SC

directory. The following directories links and files are created in run/SC:

2.3. INSTALLATION AND COMPILATION 25

IO2/
restartIN/
restartOUT/
PostIDL.exe -> /home/USER/SWMFDIR/bin/PostIDL.exe
PostSPH.exe -> /home/USER/SWMFDIR/bin/PostSPH.exe
pIDL
pTEC

In the stand alone mode of BATS-R-US the subdirectory name is always GM (independent of the value of the STAN-
DALONE variable in Makefile.def). To facilitate access to the subdirectories and scripts, a symbolic link is provided
in the run directory to all the items in run/GM.

In SWMF the run directory itself contains all the component subdirectories, and the following files, links and
subdirectories

core
job.MACHINE
LAYOUT.in
Param -> ../Param
PARAM.in
SWMF.exe -> /home/USER/SWMFDIR/bin/SWMF.exe
STDOUT/

In the stand alone BATS-R-US, other than the links to the items in the run/GM subdirectory, the following files and
links are created

BATSRUS.exe -> /home/USER/bats/src/BATSRUS.exe
core
job.MACHINE
PARAM.in

The ’core’ file is there to prohibit the creation a huge core file due to a run time error. The job.MACHINE (if
any) file contains an example script to submit a job on the given MACHINE. The PARAM.in file is copied from
Param/PARAM.DEFAULT and should be normally modified or replaced before running the code.

This directory is now setup to run the code. Links have been made to BATSRUS.exe which is the main MHD
executable, as well as the IDL post processing executable PostIDL.exe and the Tecplot post processing executable
ProcessIO.exe. The script pTEC is for processing the Tecplot files while pIDL is for processing the IDL plot
files. The scripts job.XXXXX contain sample scripts for submitting jobs to the various machines that we have run the
code on.

The run directory contains subdirectories or links to directories such as restartOUT/, IO2/, and Param/.
The first three are needed to run the code, while the fourth contains input files which can be included from the
PARAM.in file, as described below. Normally one needs at least the IO2/ and restartOUT directories to store
plot files and restart files. These are the default names, which can be changed in the PARAM.in together with the
directory names. If a needed subdirectory is missing, the code will stop with an error message.

IO2/ is the most important directory, since it contains output of the MHD run. The restartOUT/ directory is
where restart files are written. These files allow the code to be restarted if it either crashes or if the code must be run
on a queue system in which the run takes longer than the length of the run time allowed on the machine. For example,
on some machines the codes are allowed to run for two hours. Since most time accurate runs take much longer than
this, restart files can be saved near the end of the 2 hours and the code can be restarted after waiting in the queue again.

The restartIN/ directory is needed to actually restart the run from a previous run. Often the restartIN/ di-
rectory is simply a link to the restartOUT/ directory. This, however, can be dangerous because if something “bad”
occurs during the writing of the restart files, the last save may be destroyed. It is wiser to move the restartOUT/
directory to some other location, link the restartIN/ directory to this directory, and create a new restartOUT/
directory. This will ensure that the old save will be secure, while restarting correctly.

26 CHAPTER 2. USING BATS-R-US AND CRASH

The PARAM.in file contains the input parameters for the BATS-R-US code. The details about this file and the
input parameters are given in section 3.

2.4 Running a Simulation
This section describes how to run the stand alone BATS-R-US. To run BATS-R-US as part of the framework, read the
SWMF manual.

As described above, the makefile will help the user to set up a directory in which to run the main executable. This
directory will have links made to executables, will have the correct directories for input and output and will copy the
appropriate scripts (if any) for the current machine. Unfortunately, systems for running the code vary widely. For
example the NASA Ames SGI Origin and the NCSA SGI Origin have different queuing systems and therefore require
different scripts to run the code. If the user is running the code on a system which is different than the ones listed in
section 2.3.3, he or she will have to create the appropriate scripts and make the corresponding changes to the makefiles.

2.4.1 Before Running the Code
Before submitting a job or running the code interactively there are several necessary steps.

• Use make to make the BATSRUS.exe executable.

• Use make rundir to make a run directory.

• Edit the PARAM.in file in the run directory to contain all the important code input (see chapter 3).

• Check the PARAM.in file with the TestParam.pl script.

• Prepare the proper job script for the users system.

To check the parameters in the run/PARAM.in file type

./TestParam.pl

To check another parameter file named run/PARAM.in.other, type

./TestParam.pl run/PARAM.in.other

This script reads in the input parameter file and all the included files and checks that they conform with the XML de-
scription given in the PARAM.XML (or the PARAM.pl file on systems which do not have the XML-PARSER::EasyTree
Perl package installed). Error and warnings are printed on the screen. If there are no errors the script runs silently.

Before submitting a long job into the queue, it is generally a good idea to test the code interactively or in a short
queue to make sure that it is working as planned.

2.4.2 Interactive Execution
On most systems, running the code for an extended period of time on many nodes must happen through a queuing
system. Test runs, however, can often be done interactively. Although there is no universal form for running codes
under MPI, on a number of platforms (e.g. SGI or IRIX and Linux) MPI executables can be run with the

mpirun -np N BATSRUS.exe

command, where N is the number of processors to run the code on. On the Cray T3E the command would be

mpprun -n N BATSRUS.exe

and for the IBM SP

2.4. RUNNING A SIMULATION 27

BATSRUS.exe -procs N

For any given system, there will be a limit on the value of N that is allowed in the interactive queue. Note that the
above two examples may not work on some systems.

Many platforms require additional information in a script such as the length of time the run will last, the memory
usage, names of error files, and many others. To run the code, the user typically needs to prepare a script that meets
the system requirements and then submit this script to the queuing system in the appropriate way.

2.4.3 Queues and Scripts
On most platforms, the code must be run through a queue system because there are many users that share the resources
on a machine. The Scripts/Run directory contains scripts for running BATS-R-US on the currently recognized
platforms listed in section 2.3.3 at specific institutions. For example, the IRIX64 subdirectory contains scripts to
run on an SGI Origin on machines at The University of Michigan, NASA Ames and NCSA. Even though the user’s
system is an SGI Origin, the available scripts may not work for the user’s queuing system. The user will have to
develop scripts for his or her specific machine. These should be placed in the appropriate subdirectory of Scripts.
If either your queuing system or your platform is not recognized you will have to create a subdirectory and scripts. The
Makefile in the root of the distribution copies files out of this directory when creating run directories. See section 2.3.3
to get more details on the steps to take for a new platform.

Sample scripts for all of the platforms and queuing systems that the code is commonly run are found in the
Scripts directory and are copied into the run directory.

28 CHAPTER 2. USING BATS-R-US AND CRASH

Chapter 3

Input Parameters

3.1 PARAM.in
The input parameters for the BATS-R-US code are read from the PARAM.in file which must be located in the run
directory. The file controls all of the BATS-R-US functionality. When BATS-R-US runs as part of the SWMF, the
parameters for the component represented by BATS-R-US (for example GM) are given between the

#BEGIN_COMP GM
...
#END_COMP GM

commands. We refer to the lines starting with a # character as commands.
There are several features of the input parameter file syntax that allow the user to easily run the code in a variety of

modes while at the same time being able to keep a library of useful parameter files that can be used again and again.
The user should be aware of and become intimately attached to the PARAM.XML file located in the main BATS-

R-US directory. This file contains the most detailed description and complete list of the all the input parameters used
by BATS-R-US. The same file is used to produce much of this manual with the aid of the share/Scripts/XmlToTex.pl
script. The TestParam.pl script also uses the PARAM.XML file to check the PARAM.in file. Copying small
segments of the PARAM.XML file into PARAM.in can speed up the creation or modification of a parameter file.

If the command string

#END

is present, it indicates the end of the run and lines following this command are ignored. If the #END command is not
present, the end of the file indicates the end of the run.

3.2 Included Files, #INCLUDE
The PARAM.in file can include other parameter files with the command

#INCLUDE
include_parameter_filename

The include files serve two purposes: (i) they help to group the parameters; (ii) the included files can be reused for
other parameter files. An include file can include another file itself. Up to 10 include files can be nested. The include
files have exactly the same structure as PARAM.in. The only difference is that the

#END

29

30 CHAPTER 3. INPUT PARAMETERS

command in an included file means only the end of the include file, and not the end of the run, as it does in PARAM.in.
The user can place his/her included parameter files into the main run directory or in any subdirectory as long as the

correct path to the file from the run directory is included in the #INCLUDE command. There are many include files in
the Param directory. These can be included into the PARAM.in files, or they can serve as examples.

3.3 Commands, Parameters, and Comments
As can be seen from the above examples, parameters are entered with a combination of a command followed by
specific parameter(s), if any. The command must start with a hashmark (#), which is followed by capital letters
and underscores without space in between. Any characters behind the first space or TAB character are ignored (the
#BEGIN COMP and #END COMP commands are the only exception, but these are markers rather than commands).
The parameters, which follow, must conform to requirements of the command. They can be of four types: logical,
integer, real, or character string. Logical parameters can be entered as .true. or .false. or simply T or F.
Integers and reals can be in any of the usual Fortran formats. All these can be followed by arbitrary comments,
typically separated by space or TAB characters. In case of the character type input parameters (which may contain
spaces themselves), the comments must be separated by a TAB or by at least 3 consecutive space characters. Comments
can be freely put anywhere between two commands as long as they don’t start with a hashmark.

Here are some examples of valid commands, parameters, and comments:

#TIMEACCURATE
F DoTimeAccurate

Here is a comment between two commands...

#INNERBOUNDARY
ionosphereB0 TypeBcInner (3 spaces or TAB before the comment)

#STOP
-1. tSimulationMax
100 MaxIteration

#RUN ------------ last command of this session -----------------

#BORIS
T UseBorisCorrection
0.10 BorisClightFactor

Note that in the SWMF some of these commands would be in the part of the PARAM.in file which is intended
for the control module CON, while the ones specific to BATS-R-US (e.g. the #INNERBOUNDARY and #BORIS
commands would be enclosed between the #BGIN COMP and #END COMP markers. In the detailed description of
all commands, it is explicitly stated if a command can only be used in the stand alone mode.

3.4 Sessions
A single parameter file can control consecutive sessions of the run. Each session looks like

#SOME_COMMAND
param1
param2

3.5. THE ORDER OF COMMANDS 31

...

#STOP
max_simulation_time_for_this_session
max_iter_for_this_session

#RUN

while the final session ends like

#STOP
max_simulation_time_for_final_session
max_iter_for_final_session

#END

The purpose of using multiple sessions is to be able to change parameters during the run. For example one can obtain a
coarse steady state solution with a low order scheme in the first session, improve on the solution with a better scheme
and finer grid in the second session, then switch to time accurate mode in the third session. The code remembers
parameter settings from all previous sessions, so in each session one should only set those parameters which change
relative to the previous session. Note that the maximum number of iterations given in the #STOP command is meant
for the entire run, and not for the individual sessions. On the other hand, when a restart file is read, the iterations prior
to the current run do not count.

The PARAM.in file and all included parameter files are read into a buffer at the beginning of the run, so even for
multi-session runs, changes in the parameter files have no effect once PARAM.in has been read.

3.5 The Order of Commands
In essence, the order of parameter commands (#COMMAND) is arbitrary, but there are some important restrictions. We
should note that the order of the parameters following the command are not however arbitrary and must exactly match
what the code requires.

If you want all the input parameters to be echoed back, the first command in PARAM.in should be

#ECHO
T DoEcho

If the run starts from scrath (not restarted) the next commands should be

#PROBLEMTYPE
problem_type_number

and

#GRID
...

The problem type sets the default values for many parameters, which may be overwritten by the following commands.
If the problem type was set later it could overwrite the previous settings with the default values! The grid command
sets the size of the computational domain, which is used in the #SAVEPLOT command, for example. The rest of the
commands can be in arbitrary order.

If the code starts from restart files, it reads in the #PROBLEMTYPE and #GRID commands from the restart header
file. This should be done with an #INCLUDE command, which should be at the beginning of the PARAM.in file. For
example

32 CHAPTER 3. INPUT PARAMETERS

#INCLUDE
GM/restartIN/restart.H

In older versions of BATS-R-US, the same effect was achieved with the #RESTART command. For sake of backwards
compatibility the #RESTART command is still supported in the stand alone mode as long as the input restart directory
is the default one. It is recommended, however, to use the #INCLUDE command instead, because it does not have to
be changed when a stand alone PARAM.in file is used in an SWMF input file, and it also allows to use a non-default
directory name.

There are several parameters which should not be changed once the code has begun to execute. In other words,
these parameters can be defined only during the first session. These parameters typically either involve geometries
which cannot be changed, or physical parameters for which there is no reasonable reason to change. These com-
mands are marked with an if=’’$ IsFirstSession’’ conditional in the PARAM.XML file. Some of the more
commonly used first-session-only commands are

#PROBLEMTYPE
#GRID
#AMRINIT
#GAMMA
#SOLARWIND
#MAGNETOSPHERE
#BODY
#SECONDBODY

If any of these parameters are attempted to be changed in later sessions, a warning is printed on the screen, and the
command is ignored.

In several commands the frequency or ’time’ of some action has to be defined. This is usually done with a pair of
parameters. The first defines the frequency or time in terms of the number of time steps, and the second one in terms
of the simulation time. A negative value for the frequency means that it should not be taken into account. For example,
in time accurate mode,

#SAVERESTART
T DoSaveRestart
2000 DnSaveRestart
-1. DtSaveRestart

means that a restart file should be saved after every 2000th time step, while

#SAVERESTART
T DoSaveRestart
-1 DnSaveRestart
100.0 DtSaveRestart

means that it should be saved every 100 second in terms of physical time. Defining positive values for both frequencies
might be useful when switching from steady state mode to time accurate mode. In the steady state mode the DnSaveR-
estart parameter is used, while in time accurate mode the DtSaveRestart if it is positive. But it is more typical and
more intuitive to either use the frequencies based on time steps in all sessions, or to explicitly repeat the command in
the first time accurate session with the time frequency set.

3.6 Command Defaults
A quick glance the the PARAM.XML file shows that there is an overwhelmingly large number of input parameters to
BATS-R-US. Especially daunting is the long list of parameters which controls details of the numerical methods that
the code uses. Fortunately, many of these will never need to be set by the beginning user.

3.7. ITERATIONS AND FREQUENCY OF OUTPUT 33

BATS-R-US sets many of the parameters to reasonable values in the source file MH set parameters.f90.
The two routines set defaults and set problem defaults set the appropriate values. The defaults have
been chosen because they work for the vast majority of problems for which the code has been run. The PARAM.XML
file defines which commands are required with the required=’’T’’ attribute of the <command...> tag. In
general, commands which deal with details of numerics are defaulted to reasonable values. These may (and should)
need to be changed eventually by most users to achieve the desired code speed or solution accuracy, but will work
reasonably well with the defaults for most problems. Physics parameters are also defaulted by the problem type and
should work fine when running the code on a previously run problem. This will be commonly changed by users as
they begin to run their own simulations. Finally, geometry, problem type, flow control (time stepping, start and stops,
etc.) and plotting output are generally not defaulted.

3.7 Iterations and Frequency of Output
The purpose of this section is to try to help the user understand what at first may seem like an inconsistent use of
stopping frequencies and output frequencies. After using BATS-R-US over several years, it is clear to the authors that
the code is used in specific ways and the frequencies are very specifically designed to meet these needs and is the most
reasonable implementation. The main “inconsistencies” come into play when the code is restarted, but let us begin by
elaborating on time stepping and output frequencies in the code.

We begin by defining several different quantities and the variables that represent them in the code. The variable
nITER, represents the number of “iterations” that the simulation has taken since it began running. This number starts
at zero every time the code is run, even if beginning from a restart file. This is reasonable since most users know how
many iterations the code can take in a certain amount of CPU time and it is this number that is needed when running in
a queue. The quantity n step is a number of “time steps” that the code has taken in total. This number starts at zero
when the code is started from scratch, but when started from a restart file, this number will start with the time step at
which the restart file was written. This implementation lets the user output data files at a regular interval, even when
a restart happens at an odd number of iterations. The quantity time simulation is the amount of simulated, or
physical, time that the code has run. This time starts when time accurate time stepping begins. When restarting, it starts
from the physical time for the restart. Of course the time should be cumulative since it is the physically meaningful
quantity. We will use these three phrases(“iteration”, “time step”, “time”) with the meanings outlined above.

As outlined in section 3.5, commands that ask for a frequency of doing something (say writing the restart file) or
for ending a session asks for either a number of iterations, time steps or a physical (simulated) time, depending on
whether the time stepping mode is local or time accurate. With the #SAVERESTART command, for example, in local
time stepping mode the command with its parameters would be

#SAVERESTART
T DoSaveRestart
2000 DnSaveRestart
-1. DtSaveRestart

and a restart file would be written to disk every 2000 time steps. A negative value for the time frequency means that
it should not be taken into account. The previous command works in time accurate mode too, but it ismore typical to
define the frequency in physical time:

#SAVERESTART
T DoSaveRestart
-1 DnSaveRestart
100.0 DtSaveRestart

which means that the restart files should be saved every 100 seconds. Defining positive values for both frequencies
is possible but not very easy to read. In steady state mode the time step frequency, while in time accurate mode the
physical time frequency will be used.

34 CHAPTER 3. INPUT PARAMETERS

Now, what happens when the user has more than one session and he or she changes the frequencies. Let us examine
what would happen in the following sample of part of a PARAM.in file. For the following example we will assume
that when in time accurate mode, 1 iteration simulates 1 second of time. Columns to the right indicate the values of
nITER, n step and time simulation at which restart files will be written in each session.

3.7. ITERATIONS AND FREQUENCY OF OUTPUT 35

Restart Files Written at:
==SESSION 1 Session nITER n_step time_simulation
#TIMEACCURATE -------- ------ ------- --------------
F DoTimeAccurate

#SAVERESTART 1 200 200 0.0
T DoSaveRestart 1 400 400 0.0
200 DnSaveRestart
-1.0 DtSaveRestart

#STOP
400 MaxIteration
-1. tSimulationMax

#RUN ==END OF SESSION 1==

#SAVERESTART 2 600 600 0.0
T DoSaveRestart 2 900 900 0.0
300 DnSaveRestart
-1.0 DtSaveRestart

#STOP
1000 MaxIteration
-1. tSimulationMax

#RUN ==END OF SESSION 2==

#TIMEACCURATE
T DoTimeAccurate

#SAVERESTART 3 1100 1100 100.0
T DoSaveRestart 3 1200 1200 200.0
-1 DnSaveRestart 3 1300 1300 300.0
100.0 DtSaveRestart

#STOP
-1 MaxIteration
300.0 tSimulationMax

#RUN ==END OF SESSION 3==

#SAVERESTART 4 1400 1400 400.0
T DoSaveRestart 4 1800 1800 800.0
-1 DnSaveRestart 4 2000 2000 1000.0
400.0 DtSaveRestart

#STOP
-1 MaxIteration
1000.0 tSimulationMax

#END ==END OF SESSION 4==

36 CHAPTER 3. INPUT PARAMETERS

Now the question is how many iterations will be taken and when will restart file be written out. In session 1 the code
will make 400 iterations and will write a restart file at time steps 200 and 400. Since the iterations in the #STOP
command are cumulative, the #STOP command in the second session will have the code make 600 more iterations for
a total of 1000. Since the timing of output is also cumulative, a restart file will be written at time step 600 and at 900.
After session 2, the code is switched to time accurate mode. Since we have not run in this mode yet the simulated (or
physical) time is cumulatively 0. The third session will run for 300.0 simulated seconds (which for the sake of this
example is 300 iterations). The restart file will be written after every 100.0 simulated seconds or in other words at time
steps 1100, 1200 and 1300. The #STOP command in Session 4 tells the code to simulate 700.0 more seconds for a
total of 1000.0 seconds. The code will make a restart file when the time is a multiple of 400.0 seconds or at 400.0 and
800.0 seconds (1400 and 1800 time steps). Note that a restart file will also be written at time 1000.0 seconds (time
step 2000) since this is the end of a run.

Hopefully it is clear how the simulation is stopped and when output is written. Unfortunately, when restarting,
things change just slightly. Let us say that we want to restart running from where our previous example left off. We
had written a final restart file at 1000.0 seconds of simulated time, which was 2000 time steps. We want to have the
following PARAM.in file executed.

Restart Files Written at:
==SESSION 1 Session nITER n_step time_simulation

-------- ------ ------- --------------
#INCLUDE 0 2000 1000.0
GM/restartIN/restart.H

#TIMEACCURATE
F DoTimeAccurate

#SAVERESTART 1 200 2200 1000.0
T DoSaveRestart
1100 DnSaveRestart
-1.0 DtSaveRestart

#STOP
500 MaxIteration
-1. tSimulationMax

#RUN ==END OF SESSION 1==

#SAVERESTART 2 700 2700 1000.0
T DoSaveRestart 2 1000 3000 1000.0
300 DnSaveRestart
-1.0 DtSaveRestart

#STOP
1000 MaxIteration
-1. tSimulationMax

#END ==END OF SESSION 2==

Since we switched to local time stepping we only have to worry about iteration number and time steps. Here we
notice the difference in the #STOP command when restarting and looking at the iteration number. With a restart,
the #STOP command does not consider the cumulative number of time steps but starts again. However, the output
frequency is based on the cumulative time step. The simulation will make 500 iterations in the first session. This

3.7. ITERATIONS AND FREQUENCY OF OUTPUT 37

would cumulatively be 2500 time steps. The restart file will be written out at 2200 cumulative time steps or at 200
iterations into this session. The second session will make 500 more iterations for a total of 1000 in this run or 3000
time steps over all. A restart file will be written out at multiples of 300 time steps taken relative to the cumulative total
number of time steps. In other words at 2700 and 3000 time steps over all, which is at 700 and 1000 iterations in this
run.

This example shows how iterations for stopping are cumulative within a run but are not at restart, but that output
is always based on the cumulative number of time steps.

Now let us take one last example. We want to restart from 1000.0 seconds (2000 time steps) just as in the previous
example, but we want to continue with a time accurate run.

Restart Files Written at:
==SESSION 1 Session nITER n_step time_simulation

-------- ------ ------- --------------
#INCLUDE 0 2000 1000.0
GM/restartOUT/restart.H

#TIMEACCURATE
T DoTimeAccurate

#SAVERESTART 1 200 2200 1200.0
T DoSaveRestart
-1 DnSaveRestart
600.0 DtSaveRestart

#STOP
-1 MaxIteration
1500.0 tSimulationMax

#RUN ==END OF SESSION 1==

#SAVERESTART 2 700 2700 1500.0
T DoSaveRestart 2 1000 3000 2000.0
-1 DnSaveRestart
750.0 DtSaveRestart

#STOP
-1 MaxIteration
2000.0 tSimulationMax

#END ==END OF SESSION 2 =

In this example, we see that in time accurate mode the simulated, or physical, time is always cumulative. To make
500.0 seconds more simulation, the original 1000.0 seconds must be taken into account. In this example, since each
second is 1 iteration, the restart file would be written at the same time steps as in the previous example. The final
output (at 2000.0 seconds) in this case is not because a frequency was hit but because the run ended.

Throughout this section, we have used the frequency of writing restart files as an example. The frequencies of
writing plot files, writing logfiles and doing AMR work similarly. When some of these files are written, they have in
the file name a time step number. This number is always the cumulative number of time steps.

38 CHAPTER 3. INPUT PARAMETERS

3.8 Input Commands for the BATSRUS: GM, EE, SC, IH and OH Compo-
nents

List of MH (GM, EE, SC, IH, and OH) commands used in the PARAM.in file

3.8.1 Stand alone mode

#COMPONENT command

#COMPONENT
GM NameComp

This command can be used in the stand-alone mode to make BATSRUS behave as if it was the Global Magnetosphere
(GM), Eruptive Event (EE), Solar Corona (SC), Inner Heliosphere (IH) or Outer Heliosphere (OH) component of the
SWMF. The NameComp variable contains the two-character component ID of the selected component. If NameComp
is different from the default component value, then the default values for all parameters (including the component de-
pendent defaults, like coordinate system) are reset, therefore it should occur as the first command if it is used to change
the behavior of BATSRUS. The default behavior is Global Magnetosphere (GM) for the stand-alone BATSRUS.

The command is also saved into the restart header files.
In the SWMF the BATSRUS codes are configured to the appropriate components, so the default components should

not be changed by this command.

#DESCRIPTION command

#DESCRIPTION
This is a test run for Jupiter with no rotation.

This command is only used in the stand alone mode.
The StringDescription string can be used to describe the simulation for which the parameter file is written. The

#DESCRIPTION command and the StringDescription string are saved into the restart file, which helps in identifying
the restart files.

The default value is “Please describe me!”, which is self explanatory.

#ECHO command

#ECHO
T DoEcho

This command is only used in the stand alone mode.
If the DoEcho variable is true, the input parameters are echoed back. The default value for DoEcho is .false., but

it is a good idea to set it to true at the beginning of the PARAM.in file.

#PROGRESS command

#PROGRESS
10 DnProgressShort
100 DnProgressLong

The frequency of short and long progress reports for BATSRUS in stand alone mode. These are the defaults. Set -1-s
for no progress reports.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 39

#TIMEACCURATE command

#TIMEACCURATE
F IsTimeAccurate

This command is only used in stand alone mode.
If IsTimeAccurate is set to true, BATSRUS solves a time dependent problem. If IsTimeAccurate is false, a steady-

state solution is sought for. It is possible to use steady-state mode in the first few sessions to obtain a steady state
solution, and then to switch to time accurate mode in the following sessions. In time accurate mode saving plot files,
log files and restart files, or stopping conditions are taken in simulation time, which is the time relative to the initial
time. In steady state mode the simulation time is not advanced at all, instead the time step or iteration number is used
to control the frequencies of various actions.

In steady-state mode BATSRUS uses different time steps in different grid cells (limited only by the local stability
conditions) to accelerate the convergence towards steady state.

The default is time accurate mode.

#TIMEWARP command

#TIMEWARP
T UseTimeWarp
10.0 uWarpDim (read if UseTimeWarp is true)

The goal is to solve the equations in a coordinate system where time is shifted with the d = X, Y, Z, or R coordinate as
t’ = t + d/uWarpDim, where uWarpDim is a positive speed larger than the fastest characteristic speed in dimensional
units. Time warping works only if the flow is supersonic/superfast at the outer boundaries in the positive warp direction
(see #WARPDIM) and the warp speed exceeds the fastest wave speed.

The default is UseTimeWarp false.

#WARPDIM command

#WARPDIM
1 iDimWarp

Direction of time warping if it is switched on (see #TIMEWARP). The iDimWarp=0 setting means radial direction,
while 1 to 3 corresponds to the X, Y, and Z directions, respectively.

Default is iDimWarp = 0.

#WARPCMAX command

#WARPCMAX
F UseWarpCmax

If UseWarpCmax is true then use the maximum speed of the warped variables times the jump in the warped variables in
the numerical flux. If UseWarpCmax is false, use the original maximum speed with the jump in the original variables.

Default value is true.

#WARPSCHEME command

#WARPSCHEME
1e-8 Tolerance
20 MaxIteration
1 DnJacobian
1e-6 EpsRel
1e-8 EpsAbs

40 CHAPTER 3. INPUT PARAMETERS

The conversion from the warped variables W=U-F r/uWarp back to normal state variable U uses a Newton iterative
scheme.

The Tolerance parameter sets if the iterative solution Witer is close enough to W, abs(W-Witer).le.Tolerance*[abs(W)+abs(Witer)],
to finish the iteration.

MaxIteration limits the number of iterations performed to reach the tolerance. If MaxIteration is 1 then the scheme
is linearized in dU/dW.

DnJacobian sets how often the dU/dW Jacobian is calculated, which requires calculating dW/dU and an LU de-
composition. Performing this less frequently saves computation time per iteration, but it may increase the required
number of iterations.

EpsRel and EpsAbs are used to set the perturbation of U for calculating a row of the dW/dU matrix for a given
variable u as dW/du=[W(u+Eps)-W]/Eps where Eps=EpsRel*abs(u)+EpsAbs.

Default values are shown above.

#SUBCYCLING command

#SUBCYCLING
T UseSubcycling (rest read if UseSubcycling is true)
T UseMaxTimeStep
10.0 DtLimitDim

This command controls how the time stepping works in time accurate mode.
If UseSubcycling is true, the time step size in each grid block can be different. This algorithm is sometimes called

”subcycling” because some of the blocks will take several small time steps during a single global time step. This
should not be confused with the ”steady state” mode (see the TIMEACCURATE command) where each grid cell takes
different time steps and the result is only valid if a steady state is reached.

If UseMaxTimeStep is true, each blocks takes the time step determined by the local stability condition but limited
by the DtLimitDim parameter.

If UseMaxTimeStep is false, then the local time step will be set by the AMR level. For Cartesian grids the time
step will be proportional to the physical cell size, which is optimal if the wave speeds are roughly constant in the whole
domain. Note that the global time step is set so that the stability conditions hold in every grid block. A conservative flux
correction is applied at the resolution changes. On the other hand, the normal velocity, normal magnetic/electric field
etc. used in some source terms are not ”corrected”, which is different from the default uniform time step algorithm.

The DtLimitDim parameter sets an upper limit on the time step for all the grid blocks in dimensional time units
(typically seconds). Setting this parameter to a reasonable value can greatly improve the accuracy and robustness of
the scheme with minimal effect on the computational speed, since typically there are relatively few blocks that would
allow very large time steps. Setting DtLimitDim to a very large value will result in a global time step based on the
block with the largest stable time step.

Currently the subcycling algorithm is either first or second order accurate in time depending on the value of nStage
set in the #TIMESTEPPING command.

For spherical grids the #FIXAXIS command does not work with the subcycling algorithm, on the other hand the
#COARSENAXIS command can be used.

See also the #PARTSTEADY, #PARTLOCALTIMESTEP and #TIMESTEPLIMIT commands for related time
stepping algorithms.

The default is using a uniform time step for the whole domain.

#BEGIN COMP command

This command is allowed in stand alone mode only for the sake of the test suite, which contains these commands when
the framework is tested.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 41

#END COMP command

This command is allowed in stand alone mode only for the sake of the test suite, which contains these commands when
the framework is tested.

#RUN command

#RUN

This command is only used in stand alone mode.
The #RUN command does not have any parameters. It signals the end of the current session, and makes BATSRUS

execute the session with the current set of parameters. The parameters for the next session start after the #RUN
command. For the last session there is no need to use the #RUN command, since the #END command or simply the
end of the PARAM.in file makes BATSRUS execute the last session.

#END command

#END

The #END command signals the end of the included file or the end of the PARAM.in file. Lines following the #END
command are ignored. It is not required to use the #END command. The end of the included file or PARAM.in file is
equivalent with an #END command in the last line.

3.8.2 Planet parameters
The planet commands can only be used in stand alone mode. The commands allow to work with an arbitrary planet.
It is also possible to change some parameters of the planet relative to the real values.

By default Earth is assumed with its real parameters. Another planet (moon, comet) can be selected with the
#PLANET (#MOON, #COMET) command. The real planet parameters can be modified and simplified with the other
planet commands listed in this subsection. These modified commands cannot precede the #PLANET command!

#PLANET command

#PLANET
NEW NamePlanet (rest of parameters read for unknown planet)
6300000.0 RadiusPlanet [m]
5.976E+24 MassPlanet [kg]
0.000000199 OmegaPlanet [radian/s]
23.5 TiltRotation [degree]
DIPOLE TypeBField
11.0 MagAxisThetaGeo [degree]
289.1 MagAxisPhiGeo [degree]
-31100.0E-9 DipoleStrength [T]

The NamePlanet parameter contains the name of the planet with arbitrary capitalization. In case the name of the planet
is not recognized, the following variables are read: RadiusPlanet is the radius of the planet, MassPlanet is the mass
of the planet, OmegaPlanet is the angular speed relative to an inertial frame, and TiltRotation is the tilt of the rotation
axis relative to ecliptic North, TypeBField, which can be ”NONE” or ”DIPOLE”. TypeBField=”NONE” means that
the planet does not have magnetic field. If TypeBField is set to ”DIPOLE” then the following variables are read:
MagAxisThetaGeo and MagAxisPhiGeo are the colatitude and longitude of the north magnetic pole in corotating
planetocentric coordinates. Finally DipoleStrength is the equatorial strength of the magnetic dipole field. The units
are indicated in the above example, which shows the Earth values approximately.

The default value is NamePlanet=”Earth”. Although many other planets and some of the moons are recognized,
some of the parameters, like the equinox time are not yet properly set.

42 CHAPTER 3. INPUT PARAMETERS

#ROTATIONAXIS command

#ROTATIONAXIS
T IsRotAxisPrimary (rest of parameters read if true)
23.5 RotAxisTheta
198.3 RotAxisPhi

If the IsRotAxisPrimary variable is false, the rotational axis is aligned with the magnetic axis. If it is true, the other
two variables are read, which give the position of the rotational axis at the initial time in the GSE coordinate system.
Both angles are read in degrees and stored internally in radians.

The default is to use the true rotational axis determined by the date and time given by #STARTTIME.

#ROTATION command

#ROTATION
T UseRotation
24.06575 RotationPeriod [hour] (read if UseRotation is true)

If UseRotation is false, the planet is assumed to stand still, and the OmegaPlanet variable is set to zero. If UseRotation
is true, the RotationPeriod variable is read in hours, and it is converted to the angular speed OmegaPlanet given in
radians/second. Note that OmegaPlanet is relative to an inertial coordinate system, so the RotationPeriod is not 24
hours for the Earth, but the length of the astronomical day.

The default is to use rotation with the real rotation period of the planet.

#MAGNETICAXIS command

#MAGNETICAXIS
T IsMagAxisPrimary (rest of parameters read if true)
34.5 MagAxisTheta [degree]
0.0 MagAxisPhi [degree]

If the IsMagAxisPrimary variable is false, the magnetic axis is aligned with the rotational axis. If it is true, the other
two variables are read, which give the position of the magnetic axis at the initial time in the GSE coordinate system.
Both angles are read in degrees and stored internally in radians.

The default is to use the true magnetic axis determined by the date and time given by #STARTTIME.

#MAGNETICCENTER command

#MAGNETICCENTER
0.1 MagCenterX
-0.02 MagCenterY
0.0 MagCenterZ

Shifts the magnetic center (e.g. the center of the dipole) to the location given by the three parameters. The default is
no shift (at least for most planets).

#MONOPOLEB0 command

#MONOPOLEB0
16.0 MonopoleStrengthSi [Tesla]

The MonopoleStrengthSi variable contains the magnetic strength of the monopole B0 field at R=1 radial distance.
The unit is Tesla unless the normalization is set to NONE (see #NORMALIZATION command), when it is just the
normalized value.

The default value is zero.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 43

#DIPOLE command

#DIPOLE
-3.11e-5 DipoleStrengthSi [Tesla]

The DipoleStrengthSi variable contains the magnetic equatorial strength of the dipole magnetic field in Tesla.
The default value is the real dipole strength for the planet. For the Earth the default is taken to be the IGRF dipole

field that depends on the #STARTTIME. The sign is taken to be negative so that the magnetic axis can point northward
as usual.

#UPDATEB0 command

#UPDATEB0
0.0001 DtUpdateB0

The DtUpdateB0 variable determines how often the position of the magnetic axis is recalculated. A negative value
indicates that the motion of the magnetic axis during the course of the simulation is neglected. This is an optimization
parameter, since recalculating the values which depend on the orientation of the magnetic field can be costly. Since
the magnetic field moves relatively slowly as the planet rotates around, it may not be necessary to continuously update
the magnetic field orientation.

The default value is 0.0001, which means that the magnetic axis is continuously followed.

#IDEALAXES command

#IDEALAXES

The #IDEALAXES command has no parameters. It sets both the rotational and magnetic axes parallel with the ecliptic
North direction. In fact it is identical with the commands:

#ROTATIONAXIS
T IsRotAxisPrimary
0.0 RotAxisTheta
0.0 RotAxisPhi

#MAGNETICAXIS
F IsMagAxisPrimary

but much shorter.

#MULTIPOLEB0 command

#MULTIPOLEB0
T UseMultipoleB0
10 MaxHarmonicDegree
planetharmonics.txt NamePlanetaryHarmonicsFile

Using this command, you can specify the planetary magnetic field (B0) using the Spherical Harmonics expansion. This
is useful for e.g. to model the IGRF or complicated planetary magnetic field. Planetary rotation is allowed when using
this option. We suggest using the GSE coordinate system using the #COORDSYSTEM command. If UseMultipoleB0
is true, the #IDEALAXES command is enforced i.e. the dipole magnetic axis is aligned with the rotation axis. No
matter what coordinate system you use in GM, the multipole B0 calculation is always done in the GEO coordinate
system.

As of now this feature cannot be used with the IE solver, and should be used in standalone GM/BATSRUS only.
Secular variation has not been implemented yet.

The planetharmonics.txt file should be of the form -

44 CHAPTER 3. INPUT PARAMETERS

Header line (is not read) - n m g h (follow this specific order)
0 0 0.000000 0.000000
1 0 -29619.400000 0.000000
1 1 -1728.200000 5186.100000
2 0 -2267.700000 0.000000
2 1 3068.400000 -2481.600000
2 2 1670.900000 -458.000000

Where g and h are the Legendre coefficients in units of nT.

3.8.3 User defined input

#USERSWITCH command

#USERSWITCH
-all +init +ic -perturb +B0 +source +update +timestep +progress StringSwitch

This command controls the use of user defined routines in src/ModUser.f90. The string contains a single-space sepa-
rated list of switches starting with a + sign or a - sign for switching the routines on or off, respectively. This command
can occur multiple times in the same session. Previous settings are preserved for the next session. The possible
switches are (with alternative names):

all : switch all routines on or off
init, init_session : initialize user module before running session
ic, initial_condition : initial conditions
perturb, perturbation : perturbation (default is false)
B0, get_b0 : user defined B0 field
source : user source terms (explicit and implicit)
Sexpl, source_expl : explicit user source terms
Simpl, source_impl : point-implicit user source terms
update, update_state : user defined state update
timestep, time_step : user defined time step calculation
progress, write_progress: user progress report

Default is that init is on all others are off. When the perturbation is switched on, it gets switched off after the pertur-
bation is applied. The corresponding logicals can be changed in the user module.

#USERINPUTBEGIN command

#USERINPUTBEGIN

This command signals the beginning of the section of the file which is read by the subroutine user read inputs in
the ModUser.f90 file. The section ends with the #USERINPUTEND command. There is no XML based parameter
checking in the user section.

#USERINPUTEND command

#USERINPUTEND

This command signals the end of the section of the file which is read by the subroutine user read inputs in the
ModUser.f90 file. The section begins with the #USERINPUTBEGIN command. There is no XML based parame-
ter checking in the user section.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 45

3.8.4 Testing and timing

#TESTINFO command

#TESTINFO
T DoWriteCallSequence

If DoWriteCallSequence is set to true, the code will attempt to produce a call sequence from the stop mpi subroutine
(which is called when the code finds an error) by making an intentional floating point exception. This will work only
if the compiler is able to and requested to produce a call sequence. The NAGFOR compiler combined with the -debug
flag can do that.

Default is DoWriteCallSequence=F.

#TEST command

#TEST
read_inputs

A space separated list of subroutine names. Default is empty string.
Examples:

read inputs - echo the input parameters following the #TEST line
project B - info on projection scheme
implicit - info on implicit scheme
krylov - info on the Krylov solver
message count- count messages
initial refinement
...

Check the subroutines for call setoktest(”...”,oktest,oktest me) to see the appropriate strings.

#TESTIJK command

#TESTIJK
1 iTest (cell index for testing)
1 jTest (read for nDim = 2 or 3)
1 kTest (read for nDim = 3)
1 iBlockTest (block index for testing)
0 iProcTest (processor index for testing)

The location of test info in terms of indices, block and processor number. Note that the user should set #TESTIJK or
#TESTXYZ, not both.

The default test cell is shown by the example.

#TESTXYZ command

#TESTXYZ
1.5 xTest (X coordinate of cell for testing)
-10.5 yTest (Y coordinate for nDim=2 or 3)
-10. zTest (Z coordinate for nDim=3)

The location of test info in terms of coordinates. Note that the user should set #TESTIJK or #TESTXYZ, not both.
The default test cell is described in #TESTIJK.

46 CHAPTER 3. INPUT PARAMETERS

#TESTVAR command

#TESTVAR
12 NameTestVar

#TESTVAR
p NameTestVar

Index or the name of the variable to be tested. The name should agree with one of the names in the NameVar V array
in ModEquation.f90 (case insensitive). If an index is given instead of a name, it should be in the range 1 to nVar.

Default is the first variable that is usually density.

#TESTDIM command

#TESTDIM
1 iDimTest

Index of dimension/direction to be tested. Default is X dimension.

#TESTSIDE command

#TESTSIDE
0 iSideTest (-1, 0, 1)

Select the side of the cell to be tested. -1 is for ”left” side, +1 is for right side, 0 is for both sides. Currently this is
implemented in the UpdateStateFast code only, where the sides are done with multiple threads on the GPU. Default
value is shown.

#TESTPIXEL command

#TESTPIXEL
200 iPixTest
200 jPixTest

Indexes of the test pixel of the LOS plot.

#STRICT command

#STRICT
T UseStrict

If true then stop when parameters are incompatible. If false, try to correct parameters and continue. Default is true,
i.e. strict mode

#VERBOSE command

#VERBOSE
-1 lVerbose

Verbosity level controls the amount of output to STDOUT. Default level is 1.
lVerbose ≤ −1 only warnings and error messages are shown.
lVerbose ≥ 0 start and end of sessions is shown.
lVerbose ≤ 1 a lot of extra information is given.
lVerbose ≤ 10 all calls of set oktest are shown for the test processor.
lVerbose ≤ 100 all calls of set oktest are shown for all processors.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 47

#DEBUG command

#DEBUG
F DoDebug (use it as if(okdebug.and.oktest)...)
F DoDebugGhost (parameter for show_BLK in library.f90)

Excessive debug output can be controlled by the global okdebug parameter

#USERMODULE command

#USERMODULE
TEST PROBLEM Smith

Checks the selected user module. If the name differs from that of the compiled user module, a warning is written, and
the code stops in strict mode (see #STRICT command). This command is written into the restart header file too, so
the user module is checked when a restart is done. There are no default values. If the command is not present, the user
module is not checked.

#EQUATION command

#EQUATION
MHD NameEquation
8 nVar

Define the equation name and the number of variables. If any of these do not agree with the values determined by the
code, BATSRUS stops with an error. Used in restart header files and can be given in PARAM.in as a check and as a
description.

#RESTARTVARIABLES command

#RESTARTVARIABLES
Rho Mx My Mz Bx By Bz p NameRestartVar

The NameRestartVar string contains a space separated list of variable names that are stored in a restart file. This
command is saved automatically into the restart files. Other then useful information about the content of the restart
file, it is also needed for the #CHANGEVARIABLES command.

The default assumption is that the restart file contains the same variables as the equation module that the code is
compiled with.

#CHANGEVARIABLES command

#CHANGEVARIABLES
T DoChangeRestartVariables

This command allows reading restart files that were produced with different equation and user modules than what
the restarted code is using. If DoChangeRestartVariables is set to true, the code attempts to copy the corresponding
variables correctly. This typically works if the restart file contains all the variables that the restarted code is using. See
subroutine match copy restart variables in ModRestartFile.f90 for more detail.

The default is to use the same variables and equation modules during restart.

48 CHAPTER 3. INPUT PARAMETERS

#SPECIFYRESTARTVARMAPPING command

#SPECIFYRESTARTVARMAPPING
T DoSpecifyRestartVarMapping
H2OpRho H2OpP NameVarsRestartFrom
H3OpRho P NameVarsRestartTo

This command allows specifying the mapping of variables when reading restart files in one equation/user file to another
equation/user file. In the above example, the code will use the values of H2OpRho/H2OpP in the old equation/user
file to initialize the variables H3OpRho/P in the new equation/user file.

This mapping applies after the default mapping which maps the variables with the same variable names, meaning
that it will overwrite the default mapping algorithm. For example, if both the original equation/user file and the new
equation/user file have the variable P, the code will initialize P in the new equation/user file with the values of P in the
old equation/user file by default. However, in the above example, users choose to map H2OpP in the old equation/user
file to the varaible P in the new equation/user file. The mapping of variables is also shown in the runlog in case the
user wants to see how the variables are mapped.

The deafult is not to apply user specified mapping even a different equation/user file is used during restart.

#PRECISION command

#PRECISION
8 nByteReal

Define the number of bytes in a real number. If it does not agree with the value determined by the code, BATSRUS
stops with an error unless the strict mode is switched off. This is used in restart header files to store (and check) the
precision of the restart files. It is now possible to read restart files with a precision that differs from the precision
the code is compiled with, but strict mode has to be switched off with the #STRICT command. The #PRECISION
command may also be used to enforce a certain precision.

#CHECKGRIDSIZE command

#CHECKGRIDSIZE
4 nI
4 nJ
4 nK

576 MinBlockAll

This command is typically used in the restart headerfile to check consistency. The nI, nJ, nK parameters provide the
block size in terms of number of grid cells in the 3 directions. The code stops with an error message if nI, nJ, or nK
differ from the values set with Config.pl -g=...

The MinBlockAll parameter stores the total number of grid blocks actually used at the time the restart file was
saved. When doing a restart, it is used to set the number of grid blocks to be sufficient to coninue the run as long as no
AMR is performed. To allocate more blocks, use the #GRIDBLOCKALL command.

This command can also be used directly in PARAM.in to check the block size and to set the total number of blocks
at the same time.

#BLOCKLEVELSRELOADED command

#BLOCKLEVELSRELOADED

This command means that the restart file contains the information about the minimum and maximum allowed refine-
ment levels for each block. This command is only used in the restart header file.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 49

#TIMING command

#TIMING
T UseTiming (rest of parameters read if true)
-2 DnTiming (-3 none, -2 final, -1 each session)
-1 nDepthTiming (-1 for arbitrary depth)
cumu TypeTimingReport (cumu/list/tree + optional ’all’)

This command can only be used in stand alone mode. In the SWMF the #TIMING command should be issued for
CON.

If UseTiming=.true., the TIMING module must be on. If UseTiming=.false., the execution is not timed.
Dntiming determines the frequency of timing reports. If DnTiming .ge. 1, a timing report is produced every

dn timing step. If DnTiming .eq. -1, a timing report is shown at the end of each session. If DnTiming .eq. -2, a timing
report is shown at the end of the whole run. If DnTiming .eq. -3, no timing report is shown.

nDepthTiming determines the depth of the timing tree. A negative number means unlimited depth. If TimingDepth
is 1, only the full BATSRUS execution is timed.

TypeTimingReport determines the format of the timing reports: ’cumu’ - cumulative list sorted by timings ’list’ -
list based on caller and sorted by timings ’tree’ - tree based on calling sequence

If the word ’all’ is added, the timing is done on all the CPU-s. One output file will be created for each processor.
The default values are shown above.

3.8.5 Initial and boundary conditions
#SUBTRACTB0 command

#SUBTRACTB0
F DoSubtractB0

If the magnetic field is split to B0 and B1, then the initial condition set by #UNIFORMSTATE and similar commands
can either apply to the total field when DoSubtractB0 true, or to B1 only when DoSubtractB0 is set to false.

The default is DoSubtractB0 true.

#UNIFORMSTATE command

#UNIFORMSTATE
0.125 StateVar Rho
1.0 StateVar Ux
-0.5 StateVar Uy
0.0 StateVar Uz
1.0 StateVar p

The #UNIFORMSTATE command sets up a uniform initial state. This uniform state can be perturbed or modified by
the user module. The command sets the primitive variables in the order defined in the equation module.

#SHOCKTUBE command

#SHOCKTUBE
1. LeftState Rho
0. LeftState Ux
0. LeftState Uy
0. LeftState Uz
0.75 LeftState Bx
1. LeftState By

50 CHAPTER 3. INPUT PARAMETERS

0. LeftState Bz
1. LeftState p
0.125 RightState Rho
0. RightState Ux
0. RightState Uy
0. RightState Uz
0.75 RightState Bx
-1. RightState By
0. RightState Bz
0.1 RightState p

The #SHOCKTUBE command can be used to set up a shocktube problem. The left and right state values are given
in terms of the primitive variables as defined in the equation module. The shock can be shifted and rotated by the
#SHOCKPOSITION command.

By default the initial condition is uniform, and the values are determined by the #SOLARWIND command. The
user module can be used to set up more complicated initial conditions.

#SHOCKPOSITION command

#SHOCKPOSITION
5.0 ShockPosition
1/2 ShockSlope

The ShockPosition parameter sets the position where the shock, ie. the interface between the left and right states
given by the #SHOCKTUBE command, intersects the X axis. When ShockSlope is 0, the shock normal points in
the X direction. Otherwise the shock is rotated around the Z axis, and the tangent of the rotation angle is given by
ShockSlope. Possible values are

ShockSlope = 0., 1/4, 1/3, 1/2, 1., 2., 3., 4.

because these angles can be accurately represented on the grid. The default values are zero, ie. the shock is in the X=0
plane.

#RADIALSTATE command

#RADIALSTATE
1000.0 Amplitude Rho
-2.0 ExponentR Rho (read if amplitude is not 0)
400.0 Amplitude Ur
0.0 ExponentR Ur (read if amplitude is not 0)
0.0 Amplitude Ulon
0.0 Amplitude Ulat
100.0 Amplitude Br
-2.0 ExponentR Br (read if amplitude is not 0)
-10.0 Amplitude Blon
-1.0 ExponentR Blon (read if amplitude is not 0)
0.0 Amplitude Blat
100.0 Amplitude p
-10/3 ExponentR p (-2*Gamma)

Initialize the variables with a radially dependent state Amplitude*r**ExponentR. The vector variables are given in
r,lon,lat components. The above example can be used to set up initial conditions for a ”solar wind” with constant
radial velocity, Parker spiral magnetic field, and adiabatic expansion. Note that this initial state is singular at the
origin, so the origin should not be part of the computational domain.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 51

#WAVE command

#WAVE
Ux NameVar
10.0 Width
0.1 Amplitude
5.0 LambdaX
-1.0 LambdaY
-1.0 LambdaZ
90.0 Phase [deg]

Add a wave to the initial condition.
NameVar selects the primitive variable to be changed. Width limits the extent of the wave relative to the origin.

Inside the width the following formula is applied:

Var = Var + Amplitude*cos(Phase + Kx*x + Ky*y + Kz*z)**Exponent

where Kx = max(2*pi/LambdaX, 0), so negative LambdaX results in Kx=0. Ky and Kz are calculated similarly. The
exponent is given by the name of the command. For #WAVE it is 1, for #WAVE2, #WAVE4 and #WAVE6 it is 2, 4
and 6, respectively. The high power allows setting up tests for the fifth order scheme.

The wave vectors and the amplitudes of vector variables are rotated around the Z axis with the angle of the shock
slope if it is not zero.

This command can be repeated to add different waves to different variables. There is no wave perturbation by
default.

#BUMP command

#BUMP
Rho NameVar
0.1 Amplitude
5.0 WidthX
3.0 WidthY
-1.0 WidthZ
4.2 CenterX
0.0 CenterY
-0.2 CenterZ
4 nPower

Add a ”bump” perturbation to a variable.
NameVar selects the primitive variable to be perturbed.
Amplitude sets the amplitude of the perturbation.
WidthX, WidthY and WidthZ define the spatial extent of the perturbation in the 3 directions. Negative value means

that there is no restriction, so 1/Width is set to 0.
CenterX, CenterY and CenterZ define the center of the perturbation.
nPower is the power of the cosine functions, which sets the smoothness. nPower=0 defines a bump with a constant

value with a sharp edge. nPower=2 is suitable for convergence studies up to 2nd order.
For a given point at x, y, z, the normalized radial distances from the center is

r = sqrt(((x-CenterX)/WidthX)**2 + ((y-CenterY)/WidthY)**2 ...)

The perturbation is applied for r less than 0.5 as

Var = Var + Amplitude * cos(pi*r)**nPower

This command can be repeated multiple times to add perturbations to multiple variables. No perturbation is applied
by default.

52 CHAPTER 3. INPUT PARAMETERS

#SOLARWIND command

#SOLARWIND
5.0 SwNDim [n/cc]
100000.0 SwTDim [K]
-400.0 SwUxDim [km/s]
0.0 SwUyDim [km/s]
0.0 SwUzDim [km/s]
0.0 SwBxDim [nT]
0.0 SwByDim [nT]
-5.0 SwBzDim [nT]

This command defines the solar wind parameters for the GM component. The default values are all 0.0-s.

#SOLARWINDFILE command

#SOLARWINDFILE
T UseSolarWindFile (rest of parameters read if true)
IMF.dat NameSolarWindFile

Default is UseSolarWindFile = .false.
Read IMF data from file NameSolarWindFile if UseSolarWindFile is true. The data file contains all information

required for setting the upstream boundary conditions. Parameter TypeBcWest should be set to ’vary’ for the time
dependent boundary condition.

If the #SOLARWIND command is not provided then the first time read from the solar wind file will set the
normalization of all variables in the GM component. Consequently either the #SOLARWIND command or the #SO-
LARWINDFILE command with UseSolarWindFile=.true. is required by the GM component.

The input files are strutured similar to the PARAM.in file. There are #commands that can be inserted as well as
the data. The file containing the upstream conditions should include data in the following order:

yr mn dy hr min sec msec bx by bz vx vy vz dens temp

The units of the variables should be:

Magnetic field (b) nT
Velocity (v) km/s
Number Density (dens) cmˆ-3
Temperature (Temp) K

The input files can have the following optional commands at the beginning

#REREAD Reread the file if the simulation runs beyond the final time
See also the #REFRESHSOLARWINDFILE command

#COOR
GSM The coordinate system of the data: GSM (default) or GSE

#VAR
rho ux uy uz bx by bz p pe

#PLANE The input data represents values on a tilted plane
20.0 Angle to rotate in the XY plane [deg]
15.0 Angle to rotate in the XZ plane [deg]

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 53

#POSITION Y-Z Position of the satellite (also origin of plane rotation)
20.0 Y location
30.0 Z location

#SATELLITEXYZ 3D Position of the satellite
65.0 X location
0.0 Y location
0.0 Z location

#ZEROBX
T Bx is ignored and set to zero if true

#TIMEDELAY
3600.0 A constant delay added to the time in the file [s]

The #REREAD command tells BATS-R-US to reread the solarwind file when the simulation goes past the time of the
last data in the current file. The default behavior is to keep using the last data point, but this can also be changed with
the #REFRESHSOLARWINDFILE command.

The #VAR command allows reading an extended set of variables, e.g. densities of multiple species, electron
pressure, etc.

Finally, the data should be preceded by a #START. The beginning of a typical solar wind input file might look
like:

#COOR
GSM

#START
2004 6 24 0 0 58 0 2.9 -3.1 - 3.7 -300.0 0.0 0.0 5.3 2.00E+04
2004 6 24 0 1 58 0 3.0 -3.2 - 3.6 -305.0 0.0 0.0 5.4 2.01E+04

The maximum number of lines of data allowed in the input file is 50,000. However, this can be modified by
changing the variable Max Upstream Npts in the file GM/BATSRUS/get solar wind point.f90.

#REFRESHSOLARWINDFILE command

#REFRESHSOLARWINDFILE
T DoReadAgain

If DoReadAgain is set to true and the code is using a solar wind data file, the code will stop running when the
time goes beyond the end of the last data point in the solar wind input file and wait until new data arrives (see
#SOLARWINDFILE command). The same effect can be achieved with the #REREAD command put into the solar
wind input file itself (see #SOLARWIND command).

Default is DoReadAgain false, so the code keeps running with the last value read.

#BODY command

#BODY
T UseBody (rest of parameters read if true)
3.0 rBody
4.0 rCurrents (only read for GM component)
1.0 BodyNDim (/cc) for fluid 1
10000.0 BodyTDim (K) for fluid 1
0.01 BodyNDim (/cc) for fluid 2
300.0 BodyTDim (K) for fluid 2

54 CHAPTER 3. INPUT PARAMETERS

#BODY
T UseBody (rest of parameters read if true)
3.0 rBody
4.0 rCurrents (only read for GM component)
1.0 BodyNDim (/cc) for species 1
0.01 BodyNDim (/cc) for species 2
300.0 BodyTDim (K)

#MAGNETOSPHERE
T UseBody (rest of parameters read if true)
2.5 rBody
3.5 rCurrents (only read for GM component)
28.0 BodyNDim (/cc)
25000.0 BodyTDim (K)

Note that the #BODY command is most useful for Cartesian grids so that a sphere can be cut out as the inner boundary.
For spherical grids the cell based boundary at the minimum radius can be controlled with the #OUTERBOUNDARY
and #BOUNDARYSTATE commands.

If UseBody is true, the inner boundary is a spherical surface with radius rBody. The rBody is defined in units of
the planet/solar radius. It can be 1.0, in which case the simulation extends all the way to the surface of the central
body. In many cases it is more economic to use an rBody larger than 1.

The rCurrents parameter defines where the currents are calculated for the GM-IE coupling as well as for calculating
the FAC contribution of ground magnetic field perturbations.

The BodyNDim and BodyTDim parameters define the number density and temperature inside the body, respec-
tively. For multifluid MHD the number density and temperature are given for all the fluids. For multispecies MHD the
number density is given for all species followed by the (common) temperature. The exact effect of these parameters
depends on the settings in the #INNERBOUNDARY command.

The default is UseBody=F. Some typical settings are shown above.

#CORONA command

#CORONA
1.0 rCorona
1.5E8 CoronaNDim (/cc) for fluid 1
1.5E6 CoronaTDim (K)
1.5E2 CoronaNDim (/cc) for fluid 2
1.5E6 CoronaTDim (K)

This command can be used to set physical parameters at the inner boundary of the solar domain. Unlike the #BODY
command, this command does not switch on the face boundary. rCorona sets the radius of the inner boundary (typically
1 Rs). The rest of the parameters set the density and temperature for AWSoM(-R). For multi-fluid case, the values are
repeated.

Default values are shown.

#STAR command

#STAR
1.0 RadiusStar (in solar radius)
1.0 MassStar (in solar mass)
25.38 RotationPeriodStar (in days)

Modify the parameters of the central star (when BATSRUS is running in heliospheric mode). Setting zero for the
rotation period will switch off the rotation as shown by the example.

By default the Sun is the central star.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 55

#ROTPERIOD command

#ROTPERIOD
0.0 RotPeriodSI (in second)

If goal is to switch off (or modify) the effects of the star rotation FOR A GIVEN MODEL (SC, IH, OH, EE), the
#STAR command is not applicable, since it also modifies the infrastructure (HGI to HGR stransformation matrix,
Earth location, Carrington rotations etc). For this purpose #ROTPERIOD command works, which affects only the
model, not the infrastructure.

#NORMALIZATION command

#NORMALIZATION
READ TypeNormalization
1000.0 No2SiUnitX (only read if TypeNormalization=READ)
1000.0 No2SiUnitU (only read if TypeNormalization=READ)
1.0e-6 No2SiUnitRho (only read if TypeNormalization=READ)

This command determines what units are used internally in BATSRUS. The units are normalized so that several
physical constants become unity (e.g. the permeability of vacuum), so the equations are simpler in the code. The
normalization also helps to keep the various quantities within reasonable ranges. For example density of space plasma
is very small in SI units, so it is better to use some normalization, like amu/cm3. Also note that distances and positions
(like grid size, grid resolution, plotting resolution, radius of the inner body etc) are always read in normalized units
from the PARAM.in file. Other quantities are read in I/O units (see the #IOUNITS command).

The normalization of the distance, velocity and density are determined by the TypeNormalization parameter. The
normalization of all other quantities are derived from these three values. It is important to note that the normalization
of number density (defined as the density normalization divided by the proton mass) is usually not consistent with the
inverse cube of the normalization of distance.

Possible values for TypeNormalization are NONE, PLANETARY, HELIOSPHERIC, OUTERHELIO, SOLAR-
WIND, USER and READ.

If TypeNormalization=”NONE” then the distance, velocity and density units are the SI units, i.e. meter, meter/sec,
and kg/m3. Note that the magnetic field and the temperature are still normalized differently from SI units so that the
Alfven speed is B/

√
ρ and the ion temperature is simply p/(ρ/AverageIonMass), where the AverageIonMass is

given relative to the mass of proton.
If TypeNormalization=”PLANETARY” then the distance unit is the radius of the central body (moon, planet, or

the Sun). If there is no central body, the length normalization is 1km. The velocity unit is rPlanet/s (so time unit is
seconds), and the density unit is amu/cm3.

If TypeNormalization=”HELIOSPHERIC” then the distance unit is the radius of the central body (Sun, star), the
velocity unit is km/s, and the density unit is amu/cm3.

If TypeNormalization=”OUTERHELIO” then the distance unit is 1 AU, the velocity unit is km/s, and the density
unit is amu/cm3.

TypeNormalization=”SOLARWIND” is depreciated! Don’t use it. If it is used then the distance unit is the radius
of the planet, and the velocity and density are normalized to the density and the sound speed of the solar wind defined
by the #SOLARWIND or #SOLARWINDFILE commands. This normalization is very impractical, because it depends
on the solar wind values that are variable, and may not even make sense (e.g. for a shock tube test). This normalization
is only kept for sake of backwards compatibility for a few user modules (Mars, Venus, Titan, Saturn).

If TypeNormalization=”USER” the normalization is set in the user module. This may be useful if the normalization
depends on some input parameters.

Finally TypeNormalization=”READ” reads the three basic normalization units from the PARAM.in file as shown
in the example. This allows arbitrary normalization.

The restart header file saves the normalization with TypeNormalization=”READ” and the actual values of the
distance, velocity and density normalization factors. This avoids the problem of continuing the run with inconsistent

56 CHAPTER 3. INPUT PARAMETERS

normalization (e.g. if the SOLARWIND normalization is used and the solar wind parameters have been changed). It
also allows other programs to read the data saved in the restart files and convert them to appropriate units.

The default normalization is PLANETARY for GM and SOLARWIND for all other components.

#IOUNITS command

#IOUNITS
PLANETARY TypeIoUnit

This command determines the physical units of various parameters read from the PARAM.in file and written out into
log files and plot files (if they are dimensional. The units are determined by the TypeIoUnit string. Note that distances
and positions are always read in normalized units from PARAM.in but they are written out in I/O units. In most cases
the two coincides.

Also note that the I/O units are NOT necessarily physically consistent units. For example one cannot divide
distance with time and compare it with the velocity because they may be in inconsistent units. One needs to convert
into some consistent units before the various quantities can be combined.

If TypeIoUnits=”SI” the input and output values are taken in SI units (m, s, kg, etc).
The PLANETARY units use the radius of the planet for distance, seconds for time, amu/cm3 for mass density,

cm−3 for number density, km/s for speed, nPa for pressure, nT for magnetic field, micro Amper/m2 for current
density, mV/m for electric field, nT/planet radius for div B, and degrees for angles. For any other quantity SI units are
used. If there is no planet (see the #PLANET command) then the distance unit is 1 km.

The HELIOSPHERIC units use the solar radius for distance, seconds for time, km/s for velocity, degrees for angle,
and CGS units for mass density, number density, pressure, magnetic field, momentum, energy density, current, and div
B.

When TypeIoUnit=”NONE” the input and output units are the same as the normalized units (see the #NORMAL-
IZATION command).

Finally when TypeIoUnit=”USER”, the user can modify the I/O units (Io2Si V) and the names of the units (Name-
TecUnit V and NameIdlUnit V) in the subroutine user io units of the user module. Initially the values are set to SI
units.

The #IOUNITS command and the value of TypeIoUnits is saved into the restart header file so that one continues
with the same I/O units after restart.

The default is ”PLANETARY” unit if BATSRUS is used as the GM component and ”HELIOSPHERIC” otherwise
(EE, SC, IH or OH).

#RESTARTINDIR command

#RESTARTINDIR
GM/restart_n5000 NameRestartInDir

The NameRestartInDir variable contains the name of the directory where restart files are saved relative to the run
directory. The directory should be inside the subdirectory with the name of the component.

Default value is ”GM/restartIN”.

#RESTARTINFILE command

#RESTARTINFILE
one series TypeRestartInFile

This command is saved in the restart header file which is included during restart, so normally the user does not have to
use this command at all. The TypeRestartInFile parameter describes how the restart data was saved: into separate files
for each processor (’proc’), or into a single direct access file (’one’). The optional ’series’ string means that a series of
restart files were saved with the iteration number added to the beginning of the file names.

The default value is ’proc’.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 57

#NEWRESTART command

#NEWRESTART
T DoRestartBFace

The RESTARTINDIR/restart.H file always contains the #NEWRESTART command. This command is really used
only in the restart headerfile. Generally it is not inserted in a PARAM.in file by the user.

The #NEWRESTART command sets the following global variables: DoRestart=.true. (read restart files), DoRestart-
Ghost=.false. (no ghost cells are saved into restart file) DoRestartReals=.true. (only real numbers are saved in blk*.rst
files).

The DoRestartBFace parameter tells if the face centered magnetic field is saved into the restart files. These values
are used by the Constrained Transport scheme.

#RESTARTWITHFULLB command

#RESTARTWITHFULLB

This command is written by the code into the restart header file and indicates that the full magnetic field (B=B0+B1)
was saved. In the past only B1 was saved. Saving the total field allows changing B0 during restart and also allows
using the restart files without knowledge of B0. The current default is saving total B, so this command is always
present in the current restart header files.

#OUTERBOUNDARY command

#OUTERBOUNDARY
outflow TypeBc1
inflow TypeBc2
float TypeBc3 (only read in 2D and 3D)
float TypeBc4 (only read in 2D and 3D)
float TypeBc5 (only read in 3D)
float TypeBc6 (only read in 3D)

This command defines how the ghost cells are filled in at the cell based boundaries at the edges of the grid. TypeBc1
and TypeBc2 describe the boundaries at the minimum and maximum values of the first (generalized) coordinate. For
a Cartesian grid these are at xMin and xMax, while for a spherical or cylindrical grid these are at rMin and rMax.
TypeBc3 and TypeBc4 describe the boundaries at the minimum and maximum values of the second (generalized)
coordinate for 2D and 3D grids. TypeBc5 and TypeBc6 describe the boundaries at the minimum and maximum values
of the third (generalized) coordinate for 3D grids.

Possible values:

coupled - set from coupling with another component
periodic - periodic
float - zero gradient for all variables except:

Phi=0 set for the scalar in hyperbolic div B control (see #HYPERBOLICDIVB)
radiative outflow boundaries are applied for radiation energy densities

outflow - same as ’float’ but the pressure is set to pOutflow from #OUTFLOWPRESSURE
reflect - reflective (anti-symmetric for the normal components of V and B,

symmetric for all other variables)
linetied - symmetric for density, anti-symmetric for momentum, float all others
fixed - fixed solarwind values, total B is set
fixedB1 - fixed solarwind values, B1 is set
inflow/vary - time dependent boundary based on solar wind input file (#SOLARWINDFILE)
shear - sheared (intended for shock tube problem only)

58 CHAPTER 3. INPUT PARAMETERS

ihbuffer - values obtained from the IH component (this is set automatically)
none - do not change ghost cells. This is useful if the outer boundary is not used.
fieldlinethreads - threaded magnetic field BC for AWSOM-R solar model
user - user defined

Here are some tips for spherical grids. If the box defined in the #GRID command is completely inside the spherical
grid (defined by #LIMITRADIUS) then the outer cell boundary at rMax is not used. If a ”body” is used (see #BODY
command) with a radius larger or equal than the minimum radius of the spherical grid (defined by #LIMITRADIUS)
then the cell boundary at rMin is not used. On the other hand, if the box defined by #GRID is completely outside the
spherical grid then the rMax cell boundary is used, and if there is no body defined, or if it has smaller radius than rMin,
then the cell boundary at rMin is used. One can mix cell and face based boundaries. For example the xMin defined
by #GRID may cut through the spherical grid, while the xMax ... zMax may be outside. This can be used to define
inflow at the face based boundary at xMin using the #BOXBOUNDARY command, while the cell boundaries at the
rMax boundary can be set to outflow using the #OUTERBOUNDARY command.

The default values are ’none’ on all sides.

#BOXBOUNDARY command

#BOXBOUNDARY
outflow TypeBcXmin
inflow TypeBcXmax
float TypeBcYmin (only read in 2D and 3D)
float TypeBcYmax (only read in 2D and 3D)
float TypeBcZmin (only read in 3D)
float TypeBcZmax (only read in 3D)

This command defines how the face boundary values are set at the brick-shaped box cut out of a generalized coordinate
grid. Normally this command should not be used for a Cartesian grid, but it is still allowed. The size of the box is
defined by the xMin ... zMax parameters of the #GRID command.

General notes: face based boundary conditions are 1st order accurate in general, while cell based boundary condi-
tions can be 2nd order accurate. Sometimes, however, it is easier to define a face value than the state of the ghost cells
that are outside the computational domain. In our current implementation cell based boundaries can be used only at
the outer edges of the grid.

On the other hand, face based boundaries can be applied anywhere. For a face boundary each cell center is marked
as either physical or boundary cell, and the boundary conditions are applied at cell faces between a physical and a
boundary cell center. The actual boundary will be ragged (along the cell faces) and this can in fact cause numerical
problems. For supersonic outflow, the dot product of the face normal and the flow velocity should be positive, for
inflow it should be negative.

The outer boundaries have to be face based if a brick-shaped computational domain is cut out from the sphere/cylinder
(see the #LIMITRADIUS and #GRID commands) because the boundary is not aligned with the grid boundaries. If the
computational domain is the full sphere/cylinder, then cell based boundaries can be used (see #OUTERBOUNDARY).

Possible values:

float - zero gradient for all variables except:
Phi=0 set for the scalar in hyperbolic div B control (see #HYPERBOLICDIVB)
radiative outflow boundaries are applied for radiation energy densities

outflow - same as ’float’ but the pressure is set to pOutflow from #OUTFLOWPRESSURE
reflect - reflect the normal component of B1, reflect the full velocity vector
reflectb - reflect the normal component of full B, reflect the full velocity vector
reflectall - reflect the normal component of B1 and velocity, symmetric for all other
linetied - reflective for velocity, float for all others
fixed - fixed values (set by #SOLARWIND or #BOUNDARYSTATE), total B is set

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 59

fixedB1 - fixed values (set by #SOLARWIND or #BOUNDARYSTATE), B1 is set
zeroB1 - B1 is reflected, all other variables float
inflow/vary - time dependent boundary based on solar wind input file (#SOLARWINDFILE)
user - user defined

There are no default values. User must set face boundary type if a box is cut out of a non-Cartesian grid.

#BOUNDARYSTATE command

#BOUNDARYSTATE
body1 1 2 xminbox StringBoundary
1.0 BoundaryStateDim_V Rho
1.0 BoundaryStateDim_V Ux
1.0 BoundaryStateDim_V Uy
1.0 BoundaryStateDim_V Uz
0.0 BoundaryStateDim_V Bx
0.0 BoundaryStateDim_V By
0.0 BoundaryStateDim_V Bz
0.0 BoundaryStateDim_V Hyp
1.0 BoundaryStateDim_V P

This command sets the primitive variables BoundaryState V at one or more boundaries. The first parameter String-
Boundary contains a space separated list of the names or indexes of the desired boundaries to be set. Both face and
cell type boundaries can be listed.

The BoundaryStateDim V are the nVar primitive variables used at the boundary in the order defined in the equation
module ModEquation. The values are given in I/O units (see #IOUNITS command).

All boundaries can be identified with strings. Some boundaries can also be idenitified with an index between -3
and 6. Possible idenitfiers that can be listed in StringBoundary:

solid, -3 - solid face boundary (#SOLIDSTATE)
body2, -2 - second body face boundary (#INNERBOUNDARY, #SECONDBODY)
body1, -1 - first body face boundary (#INNERBOUNDARY, #BODY)
extra, 0 - extra face boundary (#EXTRABOUNDARY)
xminbox - min x coordinate face boundary (#BOXBOUNDARY, #GRID)
xmaxbox - max x coordinate face boundary
yminbox - min y coordinate face boundary
ymaxbox - max y coordinate face boundary
zminbox - min z coordinate face boundary
zmaxbox - max z coordinate face boundary
coord1min, 1 - min 1st (gen. coord.) cell boundary (#OUTERBOUNDARY)
coord1max, 2 - max 1st (gen. coord.) cell boundary (#GRIDGEOMETRY)
coord2min, 3 - min 2nd (gen. coord.) cell boundary (#LIMITRADIUS)
coord2max, 4 - max 2nd (gen. coord.) cell boundary (#GRIDGEOMETRYLIMIT)
coord3min, 5 - min 3rd (gen. coord.) cell boundary
coord3max 6 - max 3rd (gen. coord.) cell boundary

For each boundary name/index the commands controlling the boundary are shown on the right. Note that for
Cartesian grids the outer boundaries are always cell based and the box boundary cannot be used. For non-cartesian
grids the cell based outer boundaries refer to the edges of the domain given in generalized coordinates (for example
rMin or rMax), while the face based box boundaries refer to a box cut out of the non-cartesian grid at the values xMin
... zMax given in the #GRID command.

There are no default values. The boundary name(s)/index(es) and primitive state values must be given.

60 CHAPTER 3. INPUT PARAMETERS

#SOLIDSTATE command

#SOLIDSTATE
F UseSolidState (rest read if true)
user TypeBcSolid
sphere TypeSolidGeometry
1.0 rSolid
5e-3 SolidLimitDt

This command sets the solid boundary parameters. Solid boundary is one type of face boundary. Currently it works
only for a sphere geometry with radius rSolid. In local time stepping mode the timestep inside the solid body is set to
SolidLimitDt.

Default is UseSolidState=.false.

#OUTFLOWPRESSURE command

#OUTFLOWPRESSURE
T UseOutflowPressure
1e5 pOutflowSi (read if UseOutflowPressure is true)

Set pressure for ”outflow” boundary condition. This matters for subsonic outflow. Default is UseOutflowPres-
sure=.false.

#INNERBOUNDARY command

#INNERBOUNDARY
ionosphere TypeBcBody
ionosphere TypeBcBody2 !read only if UseBody2=T

TypeBcBody determines the boundary conditions at the spherical surface of the inner body when these are described
with face boundary conditions. For Cartesian grids this is always the case, because the spherical surface is not aligned
with the grid blocks, so a ghost cell based boundary condition is not possible. For spherical grids, however, both
the cell and face based boundary conditions can be used depending on the combination of commands. If face based
boundary is used then the boundary condition at the body surface is determined here as TypeBcBody; if cell based
boundary is used then the boundary condition at the body surface is determined by the TypeBc1 parameter of the
#OUTERBOUNDARY command.

TypeBcBody2 is only read if the second body is used (see the #SECONDBODY command that has to occur
BEFORE this command). The second body can be anywhere in the computational domain, so its sperical surface
is never aligned with the grid block boundaries, consequently only face boundary conditions can be applied which is
controlled by this command. It can have the same types as TypeBcBody, although not all those options are meaningful.

Possible values for TypeBcBody are:

’radialstate’ - fixed with the state defined by #RADIALSTATE
’reflect’ - reflect all components of velocity relative to corotation,

reflect the normal component of B1, other variables float
’reflectb’ - same as reflect, but the normal component of full B is reflected.
’reflectall’ - reflect the normal component of B1 and all velocities.

This is the perfectly conducting sphere. B0 should be 0.
’float’ - float all variables
’outflow’ - same as ’float’ but the pressure is set to pOutflow from #OUTFLOWPRESSURE
’fixed’ - use initial solar wind values. Total B is set to solar wind B.
’fixedb1’ - use initial solar wind values. B1 is set is to solar wind B.
’inflow/vary’ - set the solar wind values. Total B is set to solar wind B.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 61

’ionosphere’ - reflect velocity relative to corotation + ionosphere ExB drift
float B, fix rho, float P

’ionospherefloat/linetied’ - same as ionosphere but density floats too
’ionosphereoutflow’ - same as ionosphere but an empirical outflow formula

is applied above 55 degrees latitude. See #OUTFLOWCRITERIA for more information.
’polarwind’ - same as ionosphere, but in the polar region use

the density and velocity from PW component if coupled,
or apply values read from the #POLARBOUNDARY command

’buffergrid’ - IH(OH) component obtains inner boundary from the SC(IH)
component, through a buffer grid. The buffer grid is set
by the #BUFFERGRID or #HELIOBUFFERGRID commands. In
SC/GM coipling the second body BC is implemented via the
buffer grid filled in from GM, for exoplanet orbiting in
the stellar corona.

’user’ - user defined

For ’ionosphere’ and ’ionospherefloat’ types and a coupled GM-IE run, the velocity at the inner boundary is determined
by the ionosphere model.

The ’absorb’ inner BC only works with #ROTATION false.
The boundary condition on Br can be changed with the #MAGNETICINNERBOUNDARY command.
For the second body TypeBcBody2 can have the following values: ’absorb’, ’reflect’, ’reflectb’, ’reflectall’, ’float’,

’ionosphere’, ’ionospherefloat/linetied’, however, the corotation and ionospheric drift velocities are zero for the second
body.

Default value for TypeBcBody is ’none’ for the GM, EE, SC, IH and OH components, so the inner boundary must
be set by this command except the cell boundary for spherical coordinates case. Default value for TypeBcBody2 is
’none’.

#ELECTRONPRESSURERATIO command

#ELECTRONPRESSURERATIO
1.0 ElectronTemperatureRatio
1/7.8 InnerBcPeRatio

The ElectronTemperatureRatio is the same as the last parameter of the #PLASMA command. It is used to set the
electron pressure at the outer boundary and for the initial condition.

The InnerBcPeRatio is the electron pressure ratio assumed at or near the inner boundary. This parameter is used
in two different ways. When BATSRUS solves for the electron pressure as a separate variable, it is used for inner
boundary conditions for Pe. When ’ionosphere’, ’polarwind’ or ’ionosphereoutflow’ inner boundary is used, the
electron pressure is set to be float at the inner boundary by default. In order to avoid extremely low electron pressure
in the inner magnetosphere, this command ensures the ratio between the electron pressure and ion pressure at the inner
boundary is at least InnerBcPeRatio.

When BATSRUS does not solve for electron pressure, the InnerBcPeRatio constant is used in the coupling with
RCM to set the electron pressure passed to RCM to InnerBcPeRatio times the pressure of the first ion fluid.

The default values are ElectronTemperatureRatio=0 and InnerBcPeRatio=1/7.8.

#OUTFLOWCRITERIA command

#OUTFLOWCRITERIA
-1 OutflowVelocity [km/s]
2.142E7 FluxAlpha
1.265 FluxBeta

62 CHAPTER 3. INPUT PARAMETERS

This command configures the empirical outflow relationship that is activated via the #INNERBOUNDARY command
when TypeBcBody is set to ’ionosphereoutflow’. The empirical relationship is based on the work of Strangeway et
al., 2005:

FO+ = αSβ‖ (3.1)

...where FO+ is the local upflowing oxygen flux, S‖ is the local field-aligned Poynting flux, and α and β are fitting
coefficients based on observations from the FAST spacecraft. Default values for α and β, shown above, are taken
directly from Strangeway et al., 2005. In BATS-R-US, Poynting flux is taken from coupling with the IE module.

The OutflowVelocity paramter sets the radial velocity of the outflow, which also controls how flux is converted
into number density:

nO+ = FO+/UR (3.2)

If OutflowVelocity is negative, the radial velocity of oxygen is set using the energy of the fluid as obtained via the
local Joule heating and field-aligned- current conditions (obtained via IE coupling). This is the default behavior.

For more information on the empirical relationship for flux, see Strangeway, R., Ergun, J. R. E., Su, Y. J., Carlson,
C. W., & Elphic, R. C. (2005). Factors controlling ionospheric outflows as observed at intermediate altitudes. Journal
of Geophysical Research, 110(A3), A03221. http://doi.org/10.1029/2004JA010829

#MAGNETICINNERBOUNDARY command

#MAGNETICINNERBOUNDARY
-1.0 B1rCoef

The radial component of B1 on the ghost face is set as B1rGhost = B1rCoef*B1rTrue at the inner boundary. B1rCoef=-
1 corresponds to a reflective boundary, while B1rCoef=1 is a floating (zero gradient) boundary. Any value between -1
and 1 is possible. Using floating condition, however, will not work well for strong storms, as there is no mechanism
to restore the dipole after the storm. Reflective will recover the dipole, but it may result in some less stable behavior.
The optimal value may be problem dependent.

The default value corresponding to reflection is shown above.

#BUFFERGRID command

#BUFFERGRID
2 nRBuff
90 nLonBuff
45 nLatBuff
19.0 rBuffMin
21 rBuffMax
0.0 LonBuffMin
360.0 LonBuffMax
-90.0 LatBuffMin
90.0 LatBuffMax

Define the radius, angular extent and the grid resolution of the uniform spherical buffer grid used to pass information
between two coupled components running BATSRUS.

The parameters nRBuff, nPhiBuff and nThetaBuff determine the number of points in the radial, azimuthal and
latitudinal directions, respectively.

The parameters rBuffMin and rBuffMax determine the inner and outer radii of the spherical shell.
PhiBuffMin, PhiBuffMax, LatBuffMin and LatBuffMax determine the limits (in degrees) of the buffer grid in the

azimuthal and latitudinal directions.
When used to pass information from the SC(IH) component to the IH(OH) component, the entire shperical shell

should be used (alternativly, use the #HELIOBUFFERGRID command), but in certain application only a part of
the shell may be needed. The buffer should be placed in a region where the two components overlap, and the grid

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 63

resolution should be similar to the grid resolution of the coarser of the two component grids. This command can only
be used in the first session by the IH(OH) component. The buffer grid will only be used if ’buffergrid’ is chosen for
TypeBcBody in the #INNERBOUNDARY command of the target component. Default values are shown above.

#BUFFERBODY2 command

#BUFFERBODY2
2 nRBuff
90 nLonBuff
45 nLatBuff
19.0 rBuffMin
21 rBuffMax
0.0 LonBuffMin
360.0 LonBuffMax
-90.0 LatBuffMin
90.0 LatBuffMax

Define the radius, angular extent and the grid resolution of the uniform spherical buffer grid used to pass information
between two coupled components running BATSRUS. In contrast with the #BUFFERGRID command, the grid is
concetric with the second body, not heliocentric.

The parameters nRBuff, nPhiBuff and nThetaBuff determine the number of points in the radial, azimuthal and
latitudinal directions, respectively.

The parameters rBuffMin and rBuffMax determine the inner and outer radii of the spherical shell.
PhiBuffMin, PhiBuffMax, LatBuffMin and LatBuffMax determine the limits (in degrees) of the buffer grid in the

azimuthal and latitudinal directions.
When used to pass information from the GM component to the SC component, the entire shperical shell should

be used. The buffer should be placed in a region where the two components overlap, and the grid resolution should
be similar to the grid resolution of the coarser of the two component grids. This command can only be used in the
first session by the SC component. The buffer grid will only be used if ’buffergrid’ is chosen for TypeBcBody2 in the
#INNERBOUNDARY command of the target component. Default values are shown above.

#EXTRABOUNDARY command

#EXTRABOUNDARY
T UseExtraBoundary
user TypeExtraBoundary

If UseExtraBoundary is true, the user can define an extra face boundary condition in the user files. The location of this
boundary is defined in the user set boundary cells routine, while the boundary condition itself is implemented into the
user set face boundary. The extra boundary has index ExtraBc =0. The TypeExtraBoundary parameter can be used
to select from multiple boundary conditions implemented in the user module.

#POLARBOUNDARY command

#POLARBOUNDARY
20.0 PolarNDim [amu/cc] for fluid 1
100000.0 PolarTDim [K] for fluid 1
1.0 PolarUDim [km/s] for fluid 1
2.0 PolarNDim [amu/cc] for fluid 2
-1.0 PolarTDim [K] for fluid 2
1.5 PolarUDim [km/s] for fluid 2
75.0 PolarLatitude [deg]

64 CHAPTER 3. INPUT PARAMETERS

This command defines the boundary conditions in the polar region. The number density, temperature and velocity can
be given (for all fluids in multifluid calculations). Negative temperature value sets the pressure float. This mimics polar
wind like inner boundary conditions when GM is not coupled with the PW component. The PolarLatitude parameter
determines the latitudinal extent of the polar boundary where the outflow is defined.

#CPCPBOUNDARY command

#CPCPBOUNDARY
T UseCpcpBc (rest is read if true)
28.0 Rho0Cpcp [amu/cc] for 1st ion fluid/species
0.1 RhoPerCpcp [amu/cc / kV]
8.0 Rho0Cpcp [amu/cc] for 2nd ion fluid/species
0.3 RhoPerCpcp [amu/cc / kV]

NOTE: For this feature the inner boundary type has to be ”ionosphere” and the GM and IE components have to be
coupled together.

If UseCpcpBc is true, the ion mass densities at the inner boundary will depend on the cross polar cap potential
(CPCP) in a linear fashion:

RhoBc = Rho0Cpcp[i] + RhoPerCpcp[i] * Cpcp
where i is the index of the ion fluid or ion species, RhoBc and Rho0Cpcp are in I/O units (typically amu/cc),

the Cpcp is given in [kV], and the RhoPerCpcp factor is in density units per kV. The Cpcp is the average of the
northern and southern CPCPs. The example shows some reasonable values for hydrogen and oxygen. For CPCP =
0 kV RhoBc[H+] = 28 amu/cc and RhoBc[O+] = 8 amu/cc, while for CPCP = 400 kV RhoBc[H+] = 68 amu/cc and
RhoBc[O+] = 128 amu/cc.

By default the density at the inner boundary is determined by the body density given in the #BODY (same as
#MAGNETOSPHERE) command.

#YOUNGBOUNDARY command

#YOUNGBOUNDARY
T UseYoungBc (rest is read if true)
150.0 F107Young

NOTE: For this feature the inner boundary type has to be ”ionosphere” and the GM and IE components have to be
coupled together. Kp must be calculated via #GEOMAGINDICES.

This option sets the mass density via the Young et al. 1982 empirical relationship for composition. It uses Kp
(calculated by GM/BATSRUS) and F10.7 flux (given as command argument) to determine the ratio of O+ to H+. The
mass density of the inner boundary will be adjusted to match this ratio. The total number density is taken as constant
from the #BODY command.

#OHBOUNDARY command

#OHBOUNDARY
T UseOhNeutralBc (rest of parameters are read if true)
0.05 RhoNeuFactor
1.0 uNeuFactor
1.E-2 RhoNeuFactor for Ne2
0.2 uNeuFactor for Ne2

Read in density and velocity factors for each neutral fluid. These factors are used to set the boundary conditions for the
neutral fluids in the outer heliosphere component. If the flow points outward from the domain, the boundary condition
is floating. If it points inward, the density, pressure and velocity are set as RhoNeuFactor*Rho1, RhoNeuFactor*P1
and uNeuFactor*u1, where Rho1, p1, u1 are the density, pressure and velocity of the first fluid.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 65

Default is UseOhNeutralBc false.

#OHNEUTRALS command

#OHNEUTRALS
0.18 RhoNeutralsISW [amu/cc]
6519.0 TNeutralsISW [K]
26.3 UxNeutralsISW [km/s]
0.3 UyNeutralsISW [km/s]
-2.3 UzNeutralsISW [km/s]
1.0 mNeutral [amu]

Upstream boundary conditions for the neutrals in outer heliosphere component. The density, temperature and velocity
components are given by the first five parameters. The mNeutral parameter defines the mass of the neutrals in proton
mass. There are no default values, so this command is required for the OH component.

3.8.6 Grid geometry

#GRIDBLOCK command

#GRIDBLOCK
100 MaxBlock (per processor)

#GRIDBLOCKALL
4000 MaxBlock (for the whole simulation)

This command can be and should be used in the first session of BATSRUS. For a restarted run, the #CHECKGRIDSIZE
command in the restart header file also sets MaxBlock, but that can and should be overwritten if the grid is expected
to change due to an AMR.

Set the maximum number of grid blocks either per processor (#GRIDBLOCK) or in total for the whole simulation
(#GRIDBLOCKALL). Typically it is better to set the total number so the code can run on arbitrary number of CPUs.
It is a good idea to set these values to be larger than but close to the actual number of blocks used during the run to
minimize memory use and improve performance.

The default value is 10 blocks per processor, but it is not recommended to rely on the default setting.

#GRIDBLOCKIMPL command

#GRIDBLOCKIMPL
100 MaxBlockImpl per processor

#GRIDBLOCKIMPLALL
1000 MaxBlockImpl on all processors

This command can be used when or before the part implicit scheme is switched on.
Set the maximum number of grid blocks advanced by the part-implicit method (see #IMPLICIT) either per pro-

cessor (#MAXBLOCKIMPL) or in total (#MAXBLOCKIMPLALL). Note that MaxBlockImpl cannot be more than
MaxBlock, but it can be smaller to save memory.

The default is that all blocks are implicit if the part-implicit scheme is used.

66 CHAPTER 3. INPUT PARAMETERS

#GRID command

#GRID
2 nRootBlock1
1 nRootBlock2
1 nRootBlock3
-224. xMin
32. xMax

-64. yMin
64. yMax

-64. zMin
64. zMax

The nRootBlock1, nRootBlock2 and nRootBlock3 parameters define the number of blocks of the base grid, i.e. the
roots of the octree. By varying these parameters, one can setup a grid which is elongated in some direction. The
xMin, ..., zMax parameters define a brick shaped computational domain. An inner boundary may be cut out from
the domain with the #BODY and/or #LIMITRADIUS commands. It is also possible to define a spherical, cylindrical
computational domain using the #GRIDGEOMETRY and the #LIMITRADIUS commands.

There are no default values, the grid size must always be given in the first session (even if the component is
switched off in the first session!).

#GRIDSYMMETRY command

#GRIDSYMMETRY
F IsMirrorX
T IsMirrorY
T IsMirrorZ

For symmetric test problems one can model only a part of the computational domain. Providing the symmetry direc-
tions with this command allows the proper calculation of line-of-sight plots.

#COORDSYSTEM command

#COORDSYSTEM
GSM TypeCoordSystem

TypeCoordSystem defines the coordinate system for the component. The coordinate systems are defined in share/Library/src/CON axes.
Here we provide general suggestions.

For GM (Global Magnetopshere) the default coordinate system is ”GSM” with the X axis pointing towards the
Sun, and the (moving) magnetic axis contained in the X-Z plane. The inertial forces are neglected. The essentially
inertial ”GSE” system is also available, but it is not fully tested.

For SC (Solar Corona) one should always use the corotating HGR system to get an accurate solution even for
complicated active regions. Using an inertial frame would result in huge numerical errors near the Sun.

For time accurate IH solutions (e.g. CME propagation) one should use the inertial HGI system so the grid can be
refined along the Sun-Earth line. To obtain a steady state initial condition, the corotating HGC system can be used
which is aligned with the HGI system for the initial time of the simuation (see #STARTTIME command). When the
run is switched to time accurate mode, the coordinate system should be switched to HGI. The necessary transformation
of the velocity (adding the corotating velocity) is automatically performed.

For quiet steady state IH solutions the HGR system can be used. Note however that the corotating systems may
not work well if the IH domain is extended way beyond 1AU, becasue the boundary condition can become inflow type
at the corners of a Cartesian domain. In this case the inertial HGI system should be used in time accurate mode even
for obtaining the initial state.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 67

For OH one should always use the inertial HGI system. A rotating frame would have extremeley fast rotational
speeds.

Note that the HGR and HGI systems can be rotated with a fixed angle using the #ROTATEHGR and #ROTATEHGI
commands. This can be used to align the interesting plane of the simulation with the grid.

The default is component dependent: ”GSM” for GM, ”HGR” for SC, and ”HGI” for IH and OH.

#ROTATEHGR command

#ROTATEHGR
145.6 dLongitudeHgr [deg]

Rotate the HGR system by dLongitudeHgr degrees around the Z axis. A negative value is interpreted as an offset angle
which moves the planet into the -X, Z plane (so roughly towards the -X axis). Default value is 0, i.e. the true HGR
system is used.

#ROTATEHGI command

#ROTATEHGI
-1.0 dLongitudeHgi [deg]

Rotate the HGI and the related rotating HGC systems by dLongitudeHgi degrees around the Z axis. A negative value
is interpreted as an offset angle which moves the planet into the -X, Z plane (so roughly towards the -X axis). Default
value is 0, i.e. the true HGI system is used.

#GRIDGEOMETRY command

#GRIDGEOMETRY
spherical_genr TypeGeometry
Param/CORONA/grid_TR.dat NameGridFile (read if TypeGeometry is _genr)

#GRIDGEOMETRY
roundcube TypeGeometry
200.0 rRound0 ! only read for roundcube geometry
320.0 rRound1 ! only read for roundcube geometry

Note: The #LIMITRADIUS command can be used to set the radial extent of the cylindrical, spherical and roundcube
grids. The #GRIDGEOMETRYLIMIT command provides even more control.

This command determines the geometry of the grid. Possible values are Cartesian, rotated Cartesian, RZ geometry,
cylindrical, spherical and roundcube. The cylindrical and spherical grids can have logarithmic (cylindrical lnr and
spherical lnr) or arbitrarily stretched (spherical genr, cylindrical genr) radial coordinates. For the latter case the radial
stretching is read from the NameGridFile file. The roundcube geometry is a radially stretched Cartesian grid. The
stretching is controlled by the rRound0 and rRound1 parameters.

The ”RZ” geometry is a 2D grid with axial symmetry. In our particular implementation the ”X” axis is the axis of
symmetry, and the ”Y” axis is used for the radial direction.

The spherical coordinates are ordered as r, longitude, latitude. The longitude is between 0 and 360 degrees, the
latitude is between -90 and 90 degrees. The cylindrical coordinates are r, phi, z with phi between 0 and 360 degrees.

The roundcube grid can be used to make the inner or outer boundary spherical without a singularity. It works in
2D and 3D. The rRound0 parameter indicates the distance where no stretching is applied, so the grid is Cartesian. The
rRound1 parameter indicates the distance along X, Y and Z on the original grid where full stretching is applied, so the
grid becomes round and the grid cells will lie on a circle in 2D, or a spherical surface in 3D. When rRound0 is less
than rRound1, the grid is Cartesian up to rRound0. Outside rRound0 the grid is stretched outward so that it becomes
perfectly round at a radius of rRound1*sqrt(2) in 2D and rRound1*sqrt(3) in 3D, and it remains round all the way to
the outer boundary. For this case the transformation does not affect the main diagonals and the maximum stretching is

68 CHAPTER 3. INPUT PARAMETERS

applied along the main axes. To reach the perfectly round shape at the outer boundary, the xMin ... zMax parameters
of the #GRID command should be equal or larger than sqrt(nDim)*rRound1. If rRound0 is larger than rRound1 then
the grid is contracted inwards. At the origin there is no distortion. Moving outward the distortion is increased so that
at rRound1 the grid becomes round. From rRound1 to rRound0 the grid becomes Cartesian again. This can be useful
to create a sphere shaped inner boundary without any singularities. For this case the grid is not contracted along the
main axes and it is maximally contracted along the diagonals.

The rotated Cartesian geometry can be used for debugging the generalized coordinate code. It allows setting up
a Cartesian test on a rotated generalized coordinate grid. The rotation is around the Z axis with an angle alpha that
has sin(alpha)=0.6 and cos(alpha)=0.8 for sake of getting nice rational numbers. The PostIDL code unrotates the grid
and the vector variables so it can be directly compared with a Cartesian simulation. The initial conditions and the
boundary conditions, however, are not rotated automatically (yet), so they require some attention. Note that only the
first order schemes (see #SCHEME) will produce identical results on rotated and non-rotated grids because nonlinear
limiters produce different face values for the vector components.

The default is Cartesian geometry.

#GRIDGEOMETRYLIMIT command

#GRIDGEOMETRYLIMIT
spherical TypeGeometry
1.0 Coord1Min Radius
24.0 Coord1Max
0.0 Coord2Min Longitude
360.0 Coord2Max
-90.0 Coord3Min Latitude
90.0 Coord3Max

The #GRIDGEOMETRYLIMIT command is similar to the #GRIDGEOMETRY command, but provides in addition
the flexibility to change the limits of the generalized coordinates. This allows to construct grids such as a spherical or
cylindrical wedge. The radial limits are given in true radius even if the radial coordinate is logarithmic or stretched.
For spherical and cylindrical grids the angle limits are provided in degrees.

Default is Cartesian grid.

#LIMITRADIUS command

#LIMITRADIUS
10.0 rMin

100.0 rMax

Note: the #GRIDGEOMETRYLIMIT command provides even more control.
This command allows setting the mimimum and maximum radial extent of the grid. Setting rMin to a positive

value excludes the origin of a spherical grid, or the axis of the cylindrical grid.
The rMax parameter can be used to choose a spherical or cylinrical domain instead of the brick defined by the

#GRID. To achieve this, rMax has to be set to a radius that fits inside the brick defined by #GRID.
By default the inner radius is set to the radius of the inner body if it is present (see the #BODY command) and the

outer radius is set to the largest radial distance of the eight corners of the domain defined by the #GRID command. If
there is no inner body, the default inner radius is set to 0.0 for regular spherical and cylindrical grids, and to 1.0 for
logarithmic and stretched radius grids.

#UNIFORMAXIS command

#UNIFORMAXIS
T UseUniformAxis

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 69

This command can only be used in the first session. If UseUniformAxis is true, there can be no resolution change
AROUND the axis of a spherical or cylindrical grid. This is required by the supercell algorithm that can be activated
by the #FIXAXIS command. Note that there can still be resolution changes ALONG the axis.

If UseUniformAxis is false, the AMR can produce resolution changes around the axis of the grid. The super-cell
algorithm cannot be used. For restarted runs the false setting has to be repeated in the PARAM.in file used for the
restart.

The default is UseUniformAxis=T.

#FIXAXIS command

#FIXAXIS
T DoFixAxis
5.0 rFixAxis
1.5 r2FixAxis

The computational cells become very small near the symmetry axis of a spherical or cylindrical grid.
When DoFixAxis is true, the cells around the pole are merged into one ’supercell’ for the blocks that are (partially)

inside radius rFixAxis. For blocks within r2FixAxis, the radius of the supercell is 2 normal cells. Merging the small
cells allows larger time steps in time accurate runs: about a factor of 2 if only rFixAxis is used, and around factor of 3
if r2FixAxis is also used.

Note that the super-cell algorithm requires that there is no resolution change around the axis in the phi direction.
See the #UNIFORMAXIS command for more discussion.

Default is false for DoFixAxis.

#COARSEAXIS command

#COARSEAXIS
T UseCoarseAxis
3 nCoarseLayer

The computational cells become very small near the symmetry axis of a spherical or grid.
When UseCoarseAxis is true, the cells around the pole are merged into pairs, if nCoarseLayer=1. If nCoarse-

Layer=2, then around the pole each 4 cells are merged and in the second (from the pole) layer each 2 cells are merged.
To achieve this, nJ size parameter of the spherical gird should be a multiple of 4. If nCoarseLayer=3, then around the
pole each 8 cells are merged, in the second (from the pole) layer each 4 cells are merged, and in the third (from the
pole) layer each 2 cells are merged. To achieve this, nJ size parameter of the spherical gird should be a multiple of 8.

Default is false for UseCoarseAxis.

3.8.7 Initial time
#STARTTIME command

#STARTTIME
2000 iYear
3 iMonth
21 iDay
10 iHour
45 iMinute
0 iSecond

The #STARTTIME command sets the initial date and time for the simulation in Universal Time (UT) in stand alone
mode. This time is stored in the BATSRUS restart header file. It can be overwritten with a subsequent #STARTTIME
comand if necessary.

70 CHAPTER 3. INPUT PARAMETERS

In the SWMF this command checks BATSRUS start time against the SWMF start time and warns if the difference
exceeds 1 millisecond.

The default values are shown above. This is a date and time when both the rotational and the magnetic axes have
approximately zero tilt towards the Sun.

#TIMESIMULATION command

#TIMESIMULATION
1 hour tSimulation [sec]

The tSimulation variable contains the simulation time in seconds relative to the initial time set by the #STARTTIME
command. The #TIMESIMULATION command and tSimulation are saved into the restart header file, so the simu-
lation can be continued from the same time. This value can be overwritten by a subsequent #TIMESIMULATION
command if necessary.

In SWMF the BATSRUS time is checked against the global SWMF simulation time.
The default value is tSimulation=0.

#NSTEP command

#NSTEP
100 nStep

Set nStep for the component. Typically used in the restart.H header file. Generally it is not inserted in a PARAM.in file
by the user, except when the number of steps are reset for extremely long runs, such as the operational run at NOAA
SWPC, to avoid integer overflow.

The default is nStep=0 as the starting time step with no restart.

#NPREVIOUS command

#NPREVIOUS
100 nPrev
1.5 DtPrev

This command should only occur in the restart.H header file. If it is present, it indicates that the restart file contains
the state variables for the previous time step. nPrev is the time step number and DtPrev is the length of the previous
time step in seconds. The previous time step is needed for a second order in time restart with the implicit scheme.

The default is that the command is not present and no previous time step is saved into the restart files.

3.8.8 Time integration
#TIMESTEPPING command

#TIMESTEPPING
1 nStage
0.4 CflExpl

#RUNGEKUTTA
2 nStage
0.8 CflExpl

#RK
4 nStage
1.3 CflExpl

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 71

These commands set the parameters for time integration. For explicit time integration nStage is the number of stages.
Setting nStage=1 selects a temporally first order forward Euler scheme. The nStage=2 corresponds to a temporally
second order scheme. The #TIMESTEPPING command uses half time step for the first stage, and full time step for
the second stage. The #RUNGEKUTTA or #RK commands select a TVD Runge-Kutta scheme that employs full
time step in both stages and then takes their average. The nStage=3 selects a 3rd order TVD Runge-Kutta scheme.
The nStage=4 selects the classical 4th order Runge-Kutta scheme. These temporally high order options are useful in
combination with spatially higher order schemes (to be implemented).

For implicit time stepping nStage=2 corresponds to the BDF2 (Backward Differene Formula 2) scheme that uses
the previous time step to make the scheme 2nd order accurate in time.

For explicit time stepping the CPU time is proportional to the number of stages. In time accurate runs the 1-stage
explicit time stepping scheme may work reasonably well with second order spatial discretization, especially if the time
step is limited to a very small value. Using a one stage scheme can speed up the code by a factor of two with little
compromise in accuracy.

For local time stepping (steady state mode) one should always use the 2-stage scheme with 2-nd order spatial
accuracy to avoid oscillations (or use the 1-stage scheme with CflExpl=0.4).

For implicit scheme the second order BDF2 scheme is more accurate but not more expensive than the first order
backward Euler scheme, so it is a good idea to use nStage=nOrder (or at least nStage=3 for high order schemes).

To achieve consistency between the spatial and temporal orders of accuracy, the #SCHEME command always
sets nStage to be the same as nOrder except for 5th order scheme, which sets nStage=3. The #TIMESTEPPING (or
#RUNGEKUTTA or #RK) command can be used AFTER the #SCHEME command to overwrite nStage if required.

If the #SCHEME command is not used, then the defaults are nStage=2 with the half-step predictor and CflExpl=0.8.

#USEFLIC command

#USEFLIC
T UseFlic

MHD scheme which works similarly to the hybrid one and can work together with hybrid. Requires nStage=3.

#PARTLOCALTIMESTEP command

#PARTLOCALTIMESTEP
1.1 rLocalTimeStep

Use local time stepping inside radial distance rLocalTimeStep and time accurate mode in the rest of the domain. The
global time step Dt is only limited by the cells outside rLocalTimeStep. Inside rLocalTimeStep each cell advances
with the smaller of Dt and the locally stable time step. This method can speed up the calculation when near the inner
boundary the solution is quasi-steady state.

Default value is rLocalTimeStep=-1, so the scheme is not used.

#TIMESTEPLIMIT command

#TIMESTEPLIMIT
T UseDtLimit
10. DtLimitDim [sec] (read if UseDtLimit is true)

If UseDtLimit is true, the local time step is limited to DtLimitDim in either steady state mode or time accurate mode.
The only difference between running in steady state and time accurate is that the simulation time does not evolve in
steady state mode.

Limiting the local time step in steady state mode can be useful to reach steady state with less violent transients.
For time accurate simulations this feature can be useful when in some stiff regions the local stable time step is very

small, but the solution is in a quasi-steady state. If this is true, selecting a suitable value for DtLimitDim will evolve

72 CHAPTER 3. INPUT PARAMETERS

the solution in time accurate mode in the region where the stable time step is larger than DtLimitDim*Cfl, and it will
iterate with the local time step in the stiff region. As long as the quasi-steady state can follow the time evolution with
the local time step, the overall solution will be correct.

The limited time step approach is different from the part steady scheme (see #PARTSTEADY), which assumes a
near perfect steady state in parts of the domain where the solution is not evolved at all. If the stiff region cannot keep
up with the time evolution, then subcycling (see #LOCALTIMESTEP) or implicit time stepping (see #IMPLICIT) is
needed.

The default is UseDtLimit false.

#FIXEDTIMESTEP command

#FIXEDTIMESTEP
T UseDtFixed
10. DtFixedDim [sec] (read if UseDtFixed is true)

The fixed time step is typically used with the implicit and partially implicit schemes in time accurate mode. The time
step is set to DtFixedDim unless the time step control algorithm (see #TIMESTEPCONTROL or #UPDATECHECK)
reduces the time step for the sake of robustness.

The fixed time step can also be used with explicit time stepping in time accurate mode for debugging as well as
for convergence tests.

The fixed time step can not be used in steady state mode. See #TIMESTEPLIMIT if the purpose is to make
transients smaller or solve part of the domain in time accurate mode.

The default is UseDtFixed false.

#PARTSTEADY command

#PARTSTEADY
T UsePartSteady

If UsePartSteady is true, the partially steady state algorithm is used. Only blocks which are changing or next to
changing blocks are evolved. This scheme can speed up the calculation if part of the domain is in a numerical steady
state. In steady state runs the code stops when a full steady state is achieved. The conditions for checking the numerical
steady state are set by the #PARTSTEADYCRITERIA command.

See also the #LOCALTIMESTEP and #TIMESTEPLIMIT commands for related approaches.
Default value is UsePartSteady = .false.

#PARTSTEADYCRITERIA command

#PARTSTEADYCRITERIA
5 MinCheckVar
8 MaxCheckVar
0.001 RelativeEps(bx)
0.0001 AbsoluteEps(bx)
0.001 RelativeEps(by)
0.0001 AbsoluteEps(by)
0.001 RelativeEps(bz)
0.0001 AbsoluteEps(bz)
0.001 RelativeEps(p)
0.0001 AbsoluteEps(p)

The part steady scheme only evolves blocks which are changing, or neighbors of changing blocks. The scheme checks
the neighbor blocks every time step if their state variable has changed significantly. This command allows the user to

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 73

select the variables to be checked, and to set the relative and absolute limits for each variable. Only the state variables
indexed from MinCheckVar to MaxCheckVar are checked. The change in the block is significant if

max(abs(State - StateOld)) / (RelativeEps*abs(State) + AbsoluteEps)

exceeds 1.0 for any of the checked variables in any cells of the block. (including body cells but excluding ghost cells).
The RelativeEps variable determines the maximum ratio of the change and the norm of the old state. The AbsoluteEps
variable is only needed if the old state is very close to zero. It should be set to a positive value which is much smaller
than the typical significantly non-zero value of the variable.

Default values are such that all variables are checked with relative error 0.001 and absolute error 0.0001.

#POINTIMPLICIT command

#POINTIMPLICIT
T UsePointImplicit
0.5 BetaPointImplicit (read if UsePointImplicit is true)
T IsAsymmetric
T DoNormalizeCell

Switches on or off the point implicit scheme. The BetaPointImplicit parameter (in the 0.5 to 1.0 range) determines the
order of accuracy for a 2-stage scheme. If BetaPointImplicit=0.5 the point implicit scheme is second order accurate
in time when used in a 2-stage scheme. Larger values may be more robust, but only first order accurate in time. For a
1-stage scheme or for local timestepping the BetaPointImplicit parameter is ignored and the coefficient is set to 1.

If the IsAsymmetric parameter is true, the numerical Jacobian is calculated with a one-sided (asymmetric) differ-
ence formula. Otherwise a two-sided symmetric difference is used. The latter is slower somewhat but more accurate.

If DoNormalizeCell is true, the normalization of variables (this is needed to make small perturbations for the
calculation of numerical derivatives) is done cell-by-cell. The default is false, so normalization is done on a block-by-
block basis.

For single-ion MHD the default is UsePointImplicit=.false. For multi-ion MHD the default values are UsePointIm-
plicit=.true., BetaPointImplicit=1.0 and IsAsymmetric=.true.

#IMPLICIT command

#IMPLICIT
F UsePointImplicit
F UsePartImplicit
T UseFullImplicit
100.0 CflImpl (read if UsePartImplicit or UseFullImplicit is true)

If UsePointImplicit=T is set, the source terms defined in the user module are evaluated with a point implicit scheme.
See the #POINTIMPLICIT command for additional parameters (and another way of switching the point implicit
scheme on).

If UsePartImplicit=T is set, the code uses the explicit/implicit scheme. This means that some of the grid blocks
are advanced with explicit time stepping, while the rest is advance with implicit time stepping. See the #FIXED-
TIMESTEP and #IMPLICITCRITERIA command on how the explicit and implicit blocks get selected.

If UseFullImplicit=T is set, the code uses a fully implicit time stepping scheme. This is usually more costly than
the explicit/implicit scheme unless the whole computational domain requires implicit time stepping.

Note 1: If UseFullImplicit is true, UsePartImplicit and UsePointImplicit must be false.
Note 2: UsePartImplicit=T and UsePointImplicit=T may be used together: source terms are point implicit in the

explicit blocks.
The ImplCFL parameter determines the CFL number used in the implicit blocks of the fully or partially implicit

schemes. This is ignored if UseDtFixed=T is set in the #FIXEDTIMESTEP command.
Default is false for all logicals.

74 CHAPTER 3. INPUT PARAMETERS

#SEMIIMPLICIT command

#SEMIIMPLICIT
T UseSemiImplicit
radiation TypeSemiImplicit (read if UseSemiImplicit is true)

If UseSemiImplicit is true then most of the terms are evaluated explicitly, but some of them are evaluated implicitly.
The TypeSemiImplicit parameter determines which terms and corresponding variables are done semi-implicitly.
The ”radiation” option solves for the gray or multigroup diffusion energy density. For gray diffusion the internal

energy and pressure is calculated in a point implicit manner. To use gray diffusion configure BATSRUS with Config.pl
-nWave=1. To use the multi-group radiation set nWave larger than one.

The ”radiationsplit” option solves each radiation group separately. The energy exchange term is calculated point-
implicitly. The internal energy is updated in a conservative way.

The ”radcond” option solves implicitly the radiation diffusion and electron heat conduction together with the
radiation and internal energy densities being the unknowns.

The ”radcondsplit” option solves each radiation group and the electrons heat conduction separately.
The ”parcond” option solves for field aligned electron heat conduction only.
The ”cond” option solves for electron heat conduction only.
The ”resistivity” option solves for the magnetic field with dissipative and/or Hall resistivity. The ”resist” option

does NOT solve Hall term with semi-implicit. The ”resisthall” option does NOT solve dissipative resistivity.
The default is UseSemiImplicit false.

3.8.9 Implicit parameters
#IMPLICITENERGY command

#IMPLICITENERGY
F UseImplicitEnergy

If UseImplicitEnergy is true, use the energy variable(s) as unknown(s) in the implicit scheme, otherwise use the
pressure variables(s). Note that the explicit scheme that provides the right hand side of the implicit scheme may still
be conservative, and thus the overall scheme can provide correct jump conditions across standing (or slowly moving)
shocks. Away from shocks, using pressure as an implicit variable provides a more accurate and robust scheme than
using the energy variable.

The default is UseImplicitEnergy=T for sake of backwards compatibility.

#IMPLICITCRITERIA command

#IMPLICITCRITERIA
r TypeImplCrit (dt or r or test)
10.0 rImplicit (only read for TypeImplCrit = r)

Both #IMPLICITCRITERIA and #STEPPINGCRITERIA are acceptable. Only effective if PartImplicit is true in a
time accurate run. Default value is ImplCritType=’dt’.

The options are

if (TypeImplCrit ==’dt’) then blocks with DtBLK .lt. DtFixed
elseif (TypeImplCrit ==’r’) then blocks with rMinBLK .lt. rImplicit
elseif (TypeImplCrit ==’test’) then block iBlockTest on processor iProcTest

are handled with the implicit scheme. Here DtBlock is the time step allowed by the CFL condition for a given block,
while rMinBLK is the smallest radial distance for all the cells in the block.

The iBlockTest and iProcTest can be defined in the #TESTIJK command.
DtFixed must be defined in the #FIXEDTIMESTEP command.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 75

#PARTIMPL command

#PARTIMPLICIT
T UsePartImplicit2

If UsePartImplicit2 is set to true, the explicit scheme is executed in all blocks before the implicit scheme is applied
in the implicit blocks. This way the fluxes at the explicit/implicit interface are second order accurate, and the overall
part implicit scheme will be fully second order in time. When this switch is false, the explicit/implicit interface fluxes
are only first order accurate in time. A potential drawback of the second order scheme is that the explicit scheme may
crash in the implicit blocks. This could be avoided with a more sophisticated implementation. There may also be a
slight speed penalty, because the explicit scheme is applied in more blocks.

The default is UsePartImplicit2 = false for now, which is safe and backward compatible.

#IMPLSTEP command

#IMPLSTEP
0.5 ImplCoeff
F UseBdf2
F UseSourceImpl

The ImplCoeff is the beta coefficient in front of the implicit terms for the two-level implicit scheme. The UseBdf2
parameter decides if the 3 level BDF2 scheme is used or a 2 level scheme. UseSourceImpl true means that the
preconditioner should take point source terms into account.

For steady state run the default is the backward Euler scheme, which corresponds to ImplCoeff=1.0 and UsedBdf2=F.
For second order time accurate run the default is UseBdf2=T, since BDF2 is a 3 level second order in time and stable
implicit scheme. In both cases the default value for UseSourceImpl is false.

The default values can be overwritten with #IMPLSTEP, but only after the #TIMESTEPPING command! For
example one could use the 2-level trapezoid scheme with ImplCoeff=0.5 and UseBDF2=F as shown in the example
above. The BDF2 scheme determines the coefficient for the implicit terms itself, but ImplCoeff is still used in the first
time step and after AMR-s, when the code switches back to the two-level scheme for one time step.

#SEMICOEFF command

#SEMICOEFF
0.5 SemiImplCoeff

The SemiImplCoeff is the coefficient in front of the implicit part of the semi-implicit terms. The value should be in the
range 0.5 to 1. The 0.5 value will make the semi-implicit term 2nd order accurate in time, but currently the operator
splitting still renders the full scheme first order in time only. Using 1.0 is the most robust option, as it makes the
semi-implicit term to be evaluated fully implicitly, but it is first order accurate in time only. The default value is 1.

#IMPLSCHEME command

#IMPLSCHEME
1 nOrderImpl
Rusanov TypeFluxImpl

This command defines the scheme used in the implicit part (’left hand side’). The default order is first order. The
default scheme is the same as the scheme selected for the explicit part.

76 CHAPTER 3. INPUT PARAMETERS

#IMPLCHECK command

#IMPLCHECK
0.3 RejectStepLevel
0.5 RejectStepFactor
0.6 ReduceStepLevel
0.95 ReduceStepFactor
0.8 IncreaseStepLevel
1.05 IncreaseStepFactor

The update checking of the implicit scheme can be tuned with this command. Update checking is done unless
it is switched off (see UPDATECHECK command). After each (partially) implicit time step, the code computes
pRhoRelMin, which is the minimum of the relative pressure and density drops over the whole computational domain.
The algorithm is the following:

If pRhoRelMin is less than RejectStepLevel, the step is rejected, and the time step is reduced by RejectStep-
Factor; else if pRhoRelMin is less than ReduceStepLevel, the step is accepted, but the next time step is reduced by
ReduceStepFactor; else if pRhoRelMin is greater than IncreaseStepFactor, the step is accepted and the next time step
is increased by IncreaseStepFactor, but it is never increased above the value given in the FIXEDTIMESTEP command.

Assigning ReduceStepFactor=1.0 means that the time step is not reduced unless the step is rejected. Assigning
IncreaseStepFactor=1.0 means that the time step is never increased, only reduced.

Default values are shown.

#NEWTON command

#NEWTON
T UseNewton (rest of parameters read if true)
F UseConservativeImplicit
10 MaxIterNewton

If UseNewton is true a full non-linear Newton iteration is performed. If UseConservativeImplicit is true, the Newton
iteration is finished with a conservative fix (back substitution of the solution into the non-linear implicit equations).
MaxIterNewton is the maximum number of Newton iterations before giving up.

Default is UseNewton=F, i.e. we do a single ”Newton” iteration, which is the linearized implicit scheme. In most
cases that is the best choice.

#JACOBIAN command

#JACOBIAN
T DoPrecond
1E-12 JacobianEps

The Jacobian matrix is always calculated with a matrix free approach, however it can be preconditioned if DoPrecond
is set to true. JacobianEps contains the machine round off error for numerical derivatives. The default value is 1.E-12
for 8 byte reals and 1.E-6 for 4 byte reals.

The default values are shown by the example.

#PRECONDITIONER command

#PRECONDITIONER
symmetric TypePrecondSide (left, symmetric, right)
MBILU TypePrecond (JACOBI, BLOCKJACOBI, GS, BILU, MBILU)
0.5 GustafssonPar (0 to 1, read for MBILU preconditioner only)

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 77

TypePrecondSide can be left, right or symmetric. There seems to be little difference between these in terms of per-
formance. Right preconditioning does not affect the normalization of the residual. The JACOBI and BLOCKJACOBI
preconditioners are implemented to always use left preconditioning.

The TypePrecond parameter can be set to JACOBI, GAUSS-SEIDEL, BLOCKJACOBI, BILU, MBILU.
The simplest Jacobi preconditioner is mainly useful for code development purposes. It uses the inverse of the

diagonal elements of the approximate Jacobian matrix. The block-Jacobi preconditioner uses the invese of the diagonal
blocks of the Jacobian matrix. It coincides with the Jacobi preconditioner for a scalar equation. The Gauss-Seidel (GS)
preconditioner gives better performance than Jacobi, however, the BILU and MBILU preconditioners are usually more
efficient. The Modified BILU (MBILU) preconditioner allows a Gustafsson modification relative to BILU. In some
cases the modification improves the preconditioner, but sometimes it makes it worse.

The GustafssonPar parameter is only read for the MBILU preconditioner. If it is 0, the standard block (BILU)
preconditioning is done. This seems to be optimal for diffusion+relaxation type problems. Setting a positive Gustafs-
sonPar up to 1 results in the modified (MBILU) preconditioner. The maximum 1 corresponds to the full Gustafsson
modification. The default 0.5 value seems to be optimal for matrices resulting from hyperbolic (advection) type prob-
lems.

Default parameters are shown by the first example.

#SEMIPRECONDITIONER command

#SEMIPRECONDITIONER
T DoPrecond (rest of parameters are read if true)
MBILU TypePrecond (MBILU/BILU/BILU1/DILU/GS/BLOCKJACOBI/JACOBI/HYPRE)
0.5 GustafssonPar (0 to 1, read for MBILU preconditioner only)

#SEMIPRECOND
T DoPrecond
HYPRE TypePrecond

Similar to the #PRECONDITIONER command but for the semi-implicit scheme.
If DoPrecond is false, no preconditioner is used. This will result in slower convergence. It is almost always

preferable to use a preconditioner. The semi-implicit scheme always uses left side preconditioning.
The TypePrecond parameter can be set to the following values: JACOBI, BLOCKJACOBI, GS, DILU, BILU1,

BILU, MBILU or HYPRE. Most of these options are described in some detail for the #PRECONDITIONER com-
mand. BILU1 is same as BILU, but the preconditioner only acts in the first spatial dimension. This allows paralleliza-
tion in 2D and 3D, which is important when running on the GPU. Currently only the scalar case is implemented (for
example heat conduction).

The Diagonal Incomplete Lower-Upper (DILU) preconditioner assumes that the off-diagonal blocks are diagonal
matrices, and it gives the same result but faster performance than BILU in that case. This assumption holds if the
derivative of a variable in the semi-implicit terms only affects the same variable (true for heat conduction, radiative
diffusion, dissipative resistivity, but not for Hall resistivity).

The HYPRE preconditioner can only be used if the HYPRE library has been checked out into the util/ directory
and Config.pl -hypre has been set. The HYPRE preconditioning only works if the semi-implicit scheme solves for 1
variable at a time (split semi-implicit scheme).

Default values are DoPrecond=T and TypePrecond=’BILU’.

#KRYLOV command

#KRYLOV
GMRES TypeKrylov (GMRES, BICGSTAB, CG)
nul TypeInitKrylov (nul, old, explicit, scaled)
0.001 ErrorMaxKrylov
100 MaxMatvecKrylov

78 CHAPTER 3. INPUT PARAMETERS

Default values are shown.
The TypeKrylov parameter selects the iterative Krylov solver. The GMRES solver is the most robust and it con-

verges the fastest among all Krylov solvers. It uses one matrix-vector product per iteration. On the other hand it
needs to store one copy of the vector of the unknowns per iteration. GMRES also has to invert an NxN matrix in the
N-th iteration. This means that GMRES is the optimal choice if the number of iterations is relatively small, typically
less than 100. This is almost always true when the HYPRE preconditioner is used (see the #PRECONDITIONER
command).

BICGSTAB is a robust Krylov scheme that only uses 4 copies of the unknown vector, and it uses two matrix-vector
products per iteration. It usually requires somewhat more matrix-vector products than GMRES to achieve the same
accuracy (defined by the tolerance ErrorMaxKrylov). On the other hand all iterations have the same computational
cost.

The preconditioned Conjugate Gradient (CG) scheme only works for symmetric matrices. It only uses two copies
of the unknown vector. For symmetric matrices it is more efficient than BiCGSTAB. In case many iterations are
needed, it is more efficient than GMRES. The CG scheme currently does not work together with the HYPRE precon-
ditioner.

Initial guess for the Krylov type iterative scheme can be 0 (’nul’), the previous solution (’old’), the explicit solution
(’explicit’), or the scaled explicit solution (’scaled’). The iterative scheme stops if the required accuracy is achieved or
the maximum number of matrix-vector multiplications is exceeded.

The ErrorMaxKrylov parameter defines the relative accuracy of the solution. The iteration stops when the residual
(measured in the second norm) drops below the initial residual times ErrorMaxKrylov.

The MaxMatvecKrylov parameter limits the number of Krylov iterations. It also defines the maximum number
of copies of the unknown vector for the GMRES solver, although this can be overwritten with the #KRYLOVSIZE
command (see the description for more detail). If the Krylov solver does not succeed in achieving the desired accuracy
within the maximum number of iterations, an error message is printed.

#SEMIKRYLOV command

#SEMIKRYLOV
GMRES TypeKrylov (GMRES, BICGSTAB, CG)
0.001 ErrorMaxKrylov
100 MaxMatvecKrylov

Same as the #KRYLOV command, but for the semi-implicit scheme. The initial guess is always zero, so there are only
3 parameters.

Default values are shown. For Solar Corona heat conduction, the defaults are

#SEMIKRYLOV
GMRES TypeKrylov
1e-5 ErrorMaxKrylov
20 MaxMatvecKrylov

#KRYLOVSIZE command

#KRYLOVSIZE
10 nKrylovVector

The number of Krylov vectors only matters for GMRES (TypeKrylov=’gmres’). If GMRES does not converge
within nKrylovVector iterations, it needs a restart, which usually degrades its convergence rate and robustness. So
nKrylovVector should exceed the number of iterations, but it should not exceed the maximum number of iterations
MaxMatvecKrylov. On the other hand the dynamically allocated memory is also proportional to nKrylovVector. The
default is nKrylovVector=MaxMatvecKrylov (in #KRYLOV) which can be overwritten by #KRYLOVSIZE after the
#KRYLOV command (if any).

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 79

#SEMIKRYLOVSIZE command

#SEMIKRYLOVSIZE
10 nKrylovVector

Same as #KRYLOVSIZE but for the semi-implicit scheme. This command should be used after the #SEMIKRYLOV
command (if present).

3.8.10 Stopping criteria
The commands in this group only work in stand alone mode.

#STOP command

#STOP
100 MaxIteration
1 week tSimulationMax

This command is only used in stand alone mode.
The MaxIteration variable contains the maximum number of iterations since the beginning of the current run (in

case of a restart, the time steps done before the restart do not count). If nIteration reaches this value the session is
finished. The tSimulationMax variable contains the maximum simulation time relative to the initial time determined
by the #STARTTIME command. If tSimulation reaches this value the session is finished.

Using a negative value for either variables means that the corresponding condition is not checked.
Either the #STOP or the #ENDTIME command must be used in every session.

#ENDTIME command

#ENDTIME
2000 iYear

3 iMonth
22 iDay
10 iHour
45 iMinute
0 iSecond

This command can only be used in time accurate mode and in the final session.
The #ENDTIME command sets the date and time in Greenwich Mean Time (GMT) or Universal Time (UT) when

the simulation should be ended. This is an alternative to the #STOP command in the final session. This time is stored
in the final restart file as the start time for the restarted run, and the tSimulation parameter of the #TIMESIMULATION
and the nStep parameter of the #NSTEP commands are set to zero. This avoids accumulation of tSimulation or nStep
for continuously restarted runs.

There is no default value.

#CHECKSTOPFILE command

#CHECKSTOPFILE
T DoCheckStopFile

This command is only used in stand alone mode.
If DoCheckStopFile is true then the code checks if the BATSRUS.STOP file exists in the run directory. This file is

deleted at the beginning of the run, so the user must explicitly create the file with e.g. the ”touch BATSRUS.STOP”
UNIX command. If the file is found in the run directory, the execution stops in a graceful manner. Restart files and
plot files are saved as required by the appropriate parameters.

The default is DoCheckStopFile=.true.

80 CHAPTER 3. INPUT PARAMETERS

#CPUTIMEMAX command

#CPUTIMEMAX
7.5 hours CpuTimeMax [sec]

This command is only used in stand alone mode.
The CpuTimeMax variable contains the maximum allowed CPU time (wall clock time) for the execution of the

current run. If the CPU time reaches this time, the execution stops in a graceful manner. Restart files and plot files are
saved as required by the appropriate parameters. This command is very useful when the code is submitted to a batch
queue with a limited wall clock time.

The default value is -1.0, which means that the CPU time is not checked. To do the check the CpuTimeMax
variable has to be set to a positive value.

3.8.11 Output parameters

#RESTARTOUTDIR command

#RESTARTOUTDIR
GM/restart_n5000 NameRestartOutDir

The NameRestartOutDir variable contains the name of the directory where restart files are saved relative to the run
directory. The directory should be inside the subdirectory with the name of the component.

Default value is ”GM/restartOUT”.

#RESTARTOUTFILE command

#RESTARTOUTFILE
one series TypeRestartOutFile

This command determines if the restart information is saved as direct access files for each processor (proc) or into a
single direct access file containing all blocks (one).

Normally saving restart files overwrites the previous files. Adding ’series’ after the type results in a series of restart
files with names starting as nITERATION .

The most reliable format is ’proc’. If there is any issue with the ’one’ format (some machines write empty records
into the file), the ’proc’ should be used.

The default value is ’proc’.

#SAVERESTART command

#SAVERESTART
T DoSaveRestart Rest of parameters read if true
100 DnSaveRestart
-1. DtSaveRestart [seconds]

Default is DoSaveRestart=.true. with DnSaveRestart=-1 and DtSaveRestart=-1. This results in the restart file being
saved only at the end. A binary restart file is produced for every block and named as RESTARTOUTDIR/blkGLOBALBLKNUMBER.rst.
In addition the grid is described by RESTARTOUTDIR/octree.rst and an ASCII header file is produced with timestep
and time info: RESTARTOUTDIR/restart.H

The restart files are overwritten every time a new restart is done, but one can change the name of the RESTARTOUT-
DIR with the #RESTARTOUTDIR command from session to session. The default directory name is ’restartOUT’.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 81

#PLOTDIR command

The NamePlotDir variable contains the name of the directory where plot files and logfiles are saved relative to the run
directory. The directory should be inside the subdirectory with the name of the component.

Default value is ”GM/IO2”.

#SAVELOGFILE command

#SAVELOGFILE
T DoSaveLogfile, rest of parameters read if true
VAR step date GSE StringLog
100 DnSaveLogfile
-1. DtSaveLogfile [sec]
rho p ux uy uz rhoflx NameLogVars (read if StrigLog is ’var’ or ’VAR’)
4.0 10.0 rLog (radii for the flux. Read if vars include ’flx’)

If DoSaveLogFile is set to true then an ASCII logfile containing averages, point values, fluxes and other scalar
quantities is written at the frequency determined by DnSaveLogfile and DtSaveLogfile. The logfile is written into
IO2/log TIMESTAMP.log. The TIMESTAMP contains the time step or the date-time string (see the #SAVELOG-
NAME command). The logfile has a very simple format:

arbitrary header line that can define for example the units
name1 name2 name3 ... nameN
value1 value2 value3 ... valueN
value1 value2 value3 ... valueN
value1 value2 value3 ... valueN
...

The number variables as well as the number of data lines are arbitrary. The IDL macros getlog and plotlog can be used
for visualization of one or more logfiles.

The StringLog parameter can contain the following parts in arbitrary order:

StringLogVar = ’mhd’, ’raw’, ’flx’ or ’var’ - normalized units
StringLogVar = ’MHD’, ’RAW’, ’FLX’ or ’VAR’ - I/O units
StringLogTime = ’none’, ’step’, ’time’, and/or ’date’
NameCoord = ’GEO’, ’GSE’, ’GSM’, ’MAG’, ’SMG’, ’HGR’, ’HGI’ or ’HGC’

The StringLogVar part is required and it determines the list of variables to be saved into the logile. The capitalization of
StringLogVar controls whether the variables are written in normalized units (lower case) or I/O units (UPPER CASE).
(see the #IOUNITS command). The StringLogTime part is optional.

The possible values for StringLogVar and the corresponding variables together with the default values for StringLog-
Time are the following:

raw or RAW - step time Dt AverageConsVars Pmin Pmax
mhd or MHD - step date time AverageConsVars Pmin Pmax
flx or FLX - step date time Rho Pmin Pmax RhoFlx Pvecflx e2dflx
var or VAR - step time NameLogVars

The right side shows what will be saved into the logfile. The ’step’, ’time’ and ’date’ columns correspond to the
default value of StringLogTime that is discussed below. About the other variables: Dt is the length of the time step,
the AverageConsVars contain a list of averages of the conservative variables (defined in ModEquation) over the whole
domain, and Pmin and Pmax are the minimum and maximum pressures over the whole domain. The flux variables are
integrals of fluxes through spherical surfaces at the radial distances defined by the rLog parameter that is read if any
of the variables contain ’flx’ (see below).

If StringLogVar is ’var’ or ’VAR’, then the NameLogVars parameter is read and it should contain a space separated
list of any of the following log variable names:

82 CHAPTER 3. INPUT PARAMETERS

Dt - time step
Cfl - CFL number (may vary due to #TIMESTEPCONTROL)

Pmin Pmax - minimum and maximum pressure over the grid

VAR - average of variable VAR (listed in NameVar_V of ModEquation.f90)
Ux Uy Uz - average velocity on the grid
Ekinx Ekiny Ekinz - average kinetic energy in X, Y and Z directions
Ekin - average kinetic energy
Erad Ew - average radiation/wave energy (summed for all groups/waves)
Lat1 Lat2 - average of latitude of fieldline tracing (for testing)
Lon1 Lon2 Status - average of longitude and status of fieldline (for testing)

VARpnt - point value of VAR (listed in NameVar_V) at the test cell
Uxpnt Uypnt Uzpnt - point value of velocity at test cell
B1xpnt B1ypnt B1zpnt- point value of B1 field at test cell
Jxpnt Jypnt Jzpnt - point value of current density
Lat1pnt Lat2pnt - point value of latitude of fieldline mapping
Lon1pnt Lon2pnt - point value of longitude of fieldline mapping
Statuspnt - point value of status of fieldline tracing from test cell:

(0: open, 1: connected along B, 2: connected along -B, 3: closed)

Jinmax Joutmax - maximum of inward and outward currents at rCurrents of #BODY
Jin Jout - surface integral of inward and outward currents at rCurrents

Aflx - surface integral of 1 at radii defined in rLog (area)
Rhoflx - surface integral of rho*Ur at radii defined in rLog
Bflx - surface integral of Br at radii defined in rLog
B2flx - surface integral of B.B Ur at radii defined in rLog
Pvecflx - surface integral of ExB at radii defined in rLog (Poynting flux)
Dstflx - surface integral of B1z at radii defined in rLog (Dst index)

DstDivb - error of the dstflx integral due to finite value of div B
Dst - Biot-Savart integral for Dst index

E2dflx - circular integral of Ex*y-Ey*x

ANYTHINGELSE - quantity defined in user_get_log_var

The possible (0 or more) values for StringLogTime are the following:

none - there will be no indication of time in the logfile (not even the number of steps)
step - number of time steps
date - date-time as 7 integers: year month day hour minute second millisecond,
time - simulation time

The rLog parameter contains a list of radius values (in normalized units) where the *flx variables are calculated. The
rLog parameter is only read when there is at least one ’flx’ variable. The logfile will contain the name of the flx
variable combined with the radial value, for example ’dstflx R=3.0 dstflx R=3.5 dstflx R=5.0’.

If the optional NameCoord part is set, the output position, velocity, magnetic field or current density vector vari-
ables will be written out in the NameCoord coordinate system instead of the coordinate system of the component. In
the list of log variables the X, Y and Z components of a given vector have to be all present and following each other in
this order.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 83

The default is DoSaveLogFile false.

#SATELLITE command

#SATELLITE
4 nSatellite
MHD ray StringSatellite
100 DnOutput
-1. DtOutput [sec]
satellite1.dat NameTrajectoryFile
MHD trajrange StringSatellite
100 DnOutput
-1. DtOutput [sec]
satellite1.dat NameTrajectoryFile
2011-02-01T00:00:00 UT StringStartTimeTraj ! Read if StringSatellite contains ’trajrange’
2011-02-10T00:00:00 UT StringEndTimeTraj ! Read if StringSatellite contains ’trajrange’
1 h StringDtTraj ! Read if StringSatellite contains ’trajrange’
VAR traj StringSatellite
100 DnOutput
-1. DtOutput [sec]
satellite1.dat NameTrajectoryFile
rho p ux uy uz
VAR step date SMG StringSatellite
100 DnOutput
-1. DtOutput [sec]
satellite2.dat NameTrajectoryFile
rho p ux uy uz NameSatelliteVars ! Read if StringSatellite

! contains ’var’ or ’VAR’

The numerical solution can be extracted along one or more satellite trajectories. The number of satellites is defined by
the nSatellite parameter (default is 0).

For each satellite the StringSatellite parameter determines what is saved into the satellite file(s). The StringSatellite
can contain the following parts in arbitrary order

SatelliteVar = mhd, ful or var (normalized units)
MHD, FUL or VAR (I/O units)

NameCoord = GEO, GSE, GSM, MAG, SMG, HGR, HGI, HGC, hgr, hgi, hgc
OptionalVar = ray, none, step, time, traj, trajrange, date

The SatelliteVar part is required and determines the list of variables to be saved along the satellite trajectory. The
capitalization of SatelliteVar controls whether the variables are written in normalized units (lower case) or I/O units
(UPPER CASE). See the #IOUNITS command.

If SatelliteVar’ is set to ’mhd’ or ’MHD’, the primitive variables (rho, u, B, p, pPar) and the current density (Jx, Jy,
Jz) will be saved, while the ’ful’ or ’FUL’ value also saves the B1 field values. If SatelliteVar is set to ’var’ or ’VAR’
then the list of variables is read from the NameSatelliteVar parameter as a space separated list. The choices for saved
variables are any of the variable names listed in the NameVar V variable in ModEquation.f90, and the following case
insensitive variable names (after the name of the fluid is removed, e.g. OpPperp is Pperp for fluid Op):

Mx, My, Mz, Ux, Uy, Uz - momentum and velocity components
B1x, B1y, B1z, B0x, B0y, B0z - magnetic field perturbation and background
Jx, Jy, Jz - current density
n - number density
T, Temp - temperature

84 CHAPTER 3. INPUT PARAMETERS

Pperp - perpendicular pressure
Lon1, Lon2 - longitude of mapped field line along B and -B
Lat1, Lat2 - latitude of mapped field line along B and -B
Status - field line topology

(0: open, 1: closed along B, 2: closed along -B 3: fully closed)
(-1: cells inside body, -2: loop ray within block, -3: strange)

If the optional NameCoord part is set, the output position, velocity, magnetic field or current density vector variables
will be written out in the NameCoord coordinate system instead of the coordinate system of the component. In the list
of log variables the X, Y and Z components of a given vector have to be all present and following each other in this
order.

If the optional OptionalVar part contains ’ray’ then the ray (fieldline) tracing variables ’Lon1 Lat1 Lon2 Lat2
Status’ are saved as well. The strings ’step’, ’time’ and ’date’ define the corresponding time information. The value
’none’ means that no time information is saved.

none - there will be no indication of time or steps in the logfile
step - number of time steps
date - date-time as 7 integers: year month day hour minute second millisecond
time - simulation time
ray - fieldline tracing variables: lon1 lat1 lon2 lat2 status
traj - extract information along the full trajectory file
trajrange - extract information along a part of the trajectory file

More than one OptionalVar strings can be listed. They can be put together in any combination. The default value for
OptionalVar is ’step date’.

The DnOutput and DtOutput parameters determine the frequency of extracting values along the satellite trajecto-
ries.

The extracted satellite information is saved into the files named

PLOTDIR/sat_TRAJECTORYNAME_TIMESTAMP.sat

where TIMESTAMP contains the time step or the date-and-time information (see #SAVELOGNAME command) and
TRAJECTORYNAME is the name of the trajectory file. The satellite files have a very simple format:

arbitrary header line that can define for example the units
name1 name2 name3 ... nameN
value1 value2 value3 ... valueN
value1 value2 value3 ... valueN
value1 value2 value3 ... valueN
...

The number variables as well as the number of data lines are arbitrary. The IDL macros getlog and plotlog can be used
for visualization of one or more logfiles.

Satellite input files contain the trajectory of the satellite. They should have the following format:

#COOR
GSM

#START
2004 6 24 0 0 58 0 2.9 -3.1 -3.7
2004 6 24 0 1 58 0 2.8 -3.2 -3.6
...

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 85

The #COOR command is optional. It indicates which coordinate system is used for the trajectory coordinates. Possible
values (GSM, GEO, GSE, SMG, HGI, HGR...) and their meaning is described in share/Library/src/CON axes.f90.
The default coordinate system is GSM. After the #START line, the data lines contain the date-time information (year,
month, day, hour, minute, second, millisecond) and the x, y and z coordinates in normalized units (typically planetary
or solar radius, see the #NORMALIZATION command).

If the StringSatellite contains ’traj’, then the code simply extract the information at ALL satellite locations from
the satellite file.

If the StringSatellite contains ’trajrange’, then StringStartTimeTraj, StringEndTimeTraj and StringDtTraj need to
be provided followed by the NameTrajectoryFile. This alows writing the information along the trajectory file for a
given time range, both in time accurate and steady state. StringStartTimeTraj and StringEndTimeTraj determine the
time range of the output satellite file and accept the following forms of string:

A time string ending with ’ UT’, such as ’YYYY-MM-DDTHH:MM:SS:MSC UT’ or
’YYYY MM DD HH MM SS MSC UT’ (single digit need to fill 0 ahead and the
sperator (’-’, ’:’, ’T’, ’ ’) between numbers can be whatever characters)

Any number followed by ’ w’/’ d’/’ h’/’ m’/’ s’, in which case the time is with respect to
#STARTTIME. For example, 1 h here means StartTime + 1 hour. THERE IS A SPACE
BEFORE THE CHARACTER W/D/H/M/S.

Any number (in which case it is assumed to be in seconds), in which case the time
is with respect to #STARTTIME.

StringDtTraj can accept the following forms:

Any number followed by ’ w’/’ d’/’ h’/’ m’/’ s’
Any number (in which case it is assumed to be in seconds)

The default is nSatellite=0, i.e. no satellite data is saved.

#STEADYSTATESATELLITE command

#STEADYSTATESATELLITE
-1 day SatelliteTimeStart [sec]
+1 day SatelliteTimeEnd [sec]
-1 hour SatelliteTimeStart [sec]
+1 hour SatelliteTimeEnd [sec]

In the non-time-accurate mode the numerical simulation result converges to a steady-state solution. In the course of
this simulation mode, the progress in the iteration number is not associated with an increase in the physical time,
and the ultimate solution is a ”snapshot” of the parameter distribution at the time instant set by the #STARTTIME
command. Since time does not run, a satellite position cannot be determined in terms of the simulation time. Instead,
the parameters along a cut of the satellite trajectory can be saved on file for a given iteration number. The trajectory
points can be naturally parameterized by time, so that the cut can be specified with the choice of the start time, end
time, and time interval.

The command #STEADYSTATESATELLITE is required for a steady-state simulation. For each of the satellites,
the SatelliteTimeStart is a real value that sets the start of trajectory cut, while SatelliteTimeEnd sets the end of the
trajectory cut. Both are in seconds with respect to the time given in #STARTTIME. A negative value means the is time
prior to the #STARTTIME.

The DtOutput from the #SATELLITE command specifies the frequency of the points along the satellite trajec-
tory for the non-time-accurate mode, while DnOutput keeps to control the iteration number at which the data at the
trajectory cut are written to the satellite output file.

For more than one satellite (two satellites in the above given example), the start and end times should be set for all
of them.

86 CHAPTER 3. INPUT PARAMETERS

#SATELLITETIMEOFFSET command

#SATELLITETIMEOFFSET
T UseSatelliteTimeOffset
25 hour SatelliteTimeOffset [sec]
25 hour SatelliteTimeOffset [sec]
25 hour SatelliteTimeOffset [sec]

Allows to set time offset in satellite files relative to tSimulation

#PARCEL command

#PARCEL
T UseParcel ! Rest is read if true
F UseParcelTable
2 nParcel ! if UseParcelTable=F
0.0508514 xParcel 1
-1.01483 yParcel 1
-0.0888 zParcel 1
-0.178076 xParcel 2
0.442199 yParcel 2
-0.901742 zParcel 2
VAR StringParcelVar
1 DnOutput
-10 DtOutput
rho ux pe o(9) NameParcelVars ! if StringParcelVar = var/VAR

The numerical solution can be extracted along one or more plasma parcel trajectories. The number of trajectories is
defined by the nParcel parameter (default is 0).

For each parcel the StringParcel parameter determines what is saved into the file(s). Possible values are

StringParcel = mhd, ful or var (normalized units)
MHD, FUL or VAR (I/O units)

The capitalization of StringParcel controls whether the variables are written in normalized units (lower case) or I/O
units (UPPER CASE). If StringParcel is set to var or VAR, then the list of plot variables are read as the last parameter.

The DnOutput and DtOutput parameters determine the frequency of extracting values along the parcels’ trajecto-
ries.

The extracted information is saved into the files named

PLOTDIR/pcl_ID_TIMESTAMP.pcl

where TIMESTAMP contains the time step or the iteration number information and ID is the ID between 1 and nParcel
of the file. The pcl files have a very simple format:

arbitrary header line that can define for example the units
name1 name2 name3 ... nameN
value1 value2 value3 ... valueN
value1 value2 value3 ... valueN
value1 value2 value3 ... valueN
...

The number variables as well as the number of data lines are arbitrary. The IDL macros getlog and plotlog can be used
for visualization of one or more logfiles.

The default is UseParcel=F, i.e. no Lagrangian data is saved.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 87

#MAGPERTURBINTEGRAL command

#MAGPERTURBINTEGRAL
T UseSurfaceIntegral
F UseFastFacIntegral
MAG TypeCoordIndex
MAG TypeCoordFacGrid (read if UseFastFacIntegral=F)

Control what method is used to do the Biot-Savart integrals to calculate the magnetic perturbations.
If UseSurfaceIntegral is true, the volume integral over the MHD grid is replaced with a surface integral using

Igor Sokolov’s formulas. This surface integral is analytically identical with the 3D volume integral outside the sphere
plus the contributions from the external field outside the MHD grid, but computationally much less expensive. See
Appendix C.5.1 in Gombosi et al 2021 JSWSC, doi:10.1051/swsc/2021020.

If UseFastFacIntegral is true, the integrals across the gap region are precalculated for each magnetometer and
each line starting from the lat-lon grid and stored into an array LineContrib DII. At any given time this array can be
multiplied with the FAC values calculated at rCurrents to obtain the perturbation at a given magnetometer. The storage
as well as the calculation is parallel. See Appendix C.5.2 in Gombosi et al 2021 JSWSC, doi:10.1051/swsc/2021020.

TypeCoordIndex defines whether the 48 virtual magnetometers used for Kp, Ae and other indexes are in the SMG
system or the co-rotating MAG system. The MAG system allows the use of the fast FAC integration for these stations.

TypeCoordFacGrid defines the coordinate system for the spherical grid used to integrate the contributions from the
FAC in the gap region. This has to be in the corotating MAG system if UseFastFacIntegral is true. For the slow FAC
integral method, the SMG system is allowed too.

Default values are UseSurfaceIntegral=T, UseFastFacIntegral=T, TypeCoordIndex=’MAG’ and TypeCoordFac-
Grid=’MAG’, which are the optimal settings for best computational speed.

#GEOMAGINDICES command

#GEOMAGINDICES
180 nSizeKpWindow [min]
60.0 DtOutput [sec]

BATS-R-US can create synthetic geomagnetic indices by first simulating ground based measurements then processing
these data into indices. This allows for an apples-to-apples comparison of indices created by the simulation against
indices created from observations. It is also useful in an operational setting, where quick-look activity indices are
paramount. #GEOMAGINDICES activates the calculation of such indices. Results are written at a time cadence of
DtOutput to the file geoindex TIMESTAMP.log

At present, only a synthetic version of Kp is available. nSizeKpWindow, set in minutes and defaulting to 180 (3
hours), sets the size of the time-history window used in the calculation of Kp. Standard Kp uses a 3-hour window;
versions of Kp used as operational products use a window as short as 15-minutes. Note that altering this window
requires a re-scaling of the K-index conversion tables inside of the code. As Kp is written to file, so are the individual
K-indices used in the calculation. Offical Kp averages 13 K values from 13 mid-latitude magnetometer stations around
the globe. Synthetic Kp from BATS-R-US uses 24 stations at fixed local time positions and 50 degrees magnetic
latitude.

Because Kp requires a time history of geomagnetic activity, special restart files are saved when #GEOMAG-
INDICES is used. If nSizeKpWindow changes between restarts, however, the files will be rendered unusable because
the time history will no longer be valid for the calculation.

By default no indices are calculated.

#MAGNETOMETER command

#MAGNETOMETER
magin.dat NameMagInputFile

88 CHAPTER 3. INPUT PARAMETERS

single TypeFileOut
-1 DnOutput
60.0 DtOutput

The #MAGNETOMETER command is used for the calculation of the ground perturbations caused by the field aligned
currents in the ’gap’ region and the magnetopsheric currents in the GM domain.

The NameMagInputFile parameter gives the file name that contains the locations on the Earth where the user is
interested in calculating the ground magnetic perturbations. The file has the following format:

#COORD
MAG The coordinate system for the latitude/longitude below

#START
DST 360.00 360.00 Virtual DST station at the center of the Earth
YKC 68.93 299.36 The name of the station, latitude, longitude
MEA 61.57 306.20
NEW 54.85 304.68
...

The coordinate system can be set to GEO (geographic), MAG (geomagnetic) or SMG (solar magnetic) coordinates.
The station names can have maximum 3 characters. The name, latitude, and longitude columns should be separated
with spaces. If the latitude and longitude are both set to 360.0, the station is placed to the center of the Earth, and the
perturbation for this ”DST” station will be given in SMG coordinates.

The TypeFileOut parameter specifies the format of the output file. The value ’single’ creates a single output file
for all magnetometers and all output times, while ’step’ creates a new file for all magnetometers for each output time.
The naming convention for the files is controlled by the #SAVELOGNAME command.

The DnOutput and DtOutput parameters determine the frequency of writing out the calculated perturbations in
number of time steps and time interval, respectively.

The ground-based magnetic perturbations are written into the output file

GM/IO2/magnetometers_*.dat,

in which the number of time steps, the date and time, the station index, the x, y and z coordinates of the station in SM
coordinates, the 3 components (magnetic northward, eastward, and downward) of the total magnetic perturbations, as
well as the contributions due to magnetospheric currents, field-aligned currents in the gap region, and Hall and Peder-
sen currents in the ionosphere are saved. For the ”DST” station at the center of the Earth the magnetic perturbations
are given in the SMG coordinates: north=x, east=y, down=z. The units of coordinates is meters, while the magnetic
perturbations are given in nT.

Default is no magnetic perturbation calculation.

#MAGNETOMETERGRID command

#MAGNETOMETERGRID
2 nMagGridFile
global ascii StrGridFileOut (ascii, tec, real4, real8)
GEO TypeCoordGrid (GEO, MAG, SMG, GSM)
360 nGridLon
171 nGridLat
0. GridLonMin
360. GridLonMax
-85. GridLatMin
85. GridLatMax
-1 DnSaveMagGrid

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 89

60.0 DtSaveMagGrid
us real4 StrGridFileOut (ascii, tec, real4, real8)
GEO TypeCoordGrid (GEO, MAG, SMG, GSM)
320 nGridLon
171 nGridLat
200. GridLonMin
360. GridLonMax
0. GridLatMin
85. GridLatMax
-1 DnSaveMagGrid
30.0 DtSaveMagGrid

This command allows calculating and saving magnetic perturbations on multiple longitude-latitude grids. nMagGrid-
File specifies the number of magnetometer grid outputs.

StrGridFileOut specifies the region name (part of the file name) and format. The region name can be any arbitrary
string (e.g., usa, europe, global). The format can be ’ascii’ (text file), ’tec’ (Tecplot text file), ’real4’ (single precision
binary) or ’real8’ (double precision binary).

TypeCoordGrid provides The coordinate system of the grid, which is usually set to GEO (geographic) or MAG
(geomagnetic). Both of these allow for fast calculation (see UseFastFacIntegral parameter of the #MAGPERTURBIN-
TEGRAL command). The values SMG (solar magnetic) or GSM (Geographic-Solar-Magnetic) are also allowed, but
those do not work with the fast integration method.

Note that the three components of the dB magnetic perturbations in the output file are always magnetic north,
magnetic east and down (NED), which is independent of the coordinate system chosen for the grid.

The nGridLon and nGridLat parameters define the number of grid points in the longitude and latitude directions,
respectively. The longitudes span from from GridLonMin to GridLonMax, while the latitudes span from GridLatMin
to GridLatMax. If the longitude spans 360 degrees, the stations will be arranged so that the equivalent longitudes of 0
and 360 are not repeated. However, if -90 or +90 degrees is used for the maximum/minimum latitude, the polar stations
will be repeated nLonMagGrid times, so choose limits wisely. The 2D output files are saved every DnSaveMagGrid
steps or DtSaveMagGrid seconds.

No magnetometer grid file is saved by default.

#SUPERMAGINDICES command

#SUPERMAGINDICES
T DoWriteSupermagIndices

This command calculates and saves synthetic SuperMAG geomagnetic indices from the magnetometer grid.
The indices SML (AL), SMU (AU), SME (AE), and SMO (AO) are computed using every grid point defined in the

#MAGNETOMETERGRID command, within the magnetic latitude range +40 to +80. Output is written at the same
cadence as the DnSaveMagGrid or DtSaveMagGrid and saved in the superindex*.log file.

If the #SUPERMAGINDICES command is used without the #MAGNETOMETERGRID command, or if the mag-
netometer grid does not cover the full latitude range from +40 to +80, then a warning message will be generated and
indices are not calculated.

#SAVEPLOT command

#SAVEPLOT
21 nPlotFile
cut MHD tcp StringPlot ! 3d cell centered Tecplot with MHD data
100 DnSavePlot
-1. DtSavePlot
-10. Coord1MinCut

90 CHAPTER 3. INPUT PARAMETERS

10. Coord1MaxCut
-10. Coord2MinCut
10. Coord2MaxCut
-10. Coord3MinCut
10. Coord3MaxCut
2d FUL hdf StringPlot ! 2d HDF plot with a lot of data
100 DnSavePlot
-1. DtSavePlot
1d HD idl_tec StringPlot ! 1d plot (with Tecplot header) along X axis
100 DnSavePlot
-1. DtSavePlot
0. DxSavePlot ! with smallest grid resolution
y=0 VAR idl StringPlot ! y=0 plane plot with listed variables
-1 DnSavePlot
100. DtSavePlot
0.25 DxSavePlot ! resolution (for IDL plots)
{MHD} impl dx NameVars
{default} c NamePars
cut ray idl_real8 StringPlot ! 3D cut plot with raytrace info
1 DnSavePlot
-1. DtSavePlot
-10. Coord1MinCut
10. Coord1MaxCut
-10. Coord2MinCut
10. Coord2MaxCut
-10. Coord3MinCut
10. Coord3MaxCut
-1. DxSavePlot ! unstructured grid (for IDL plots)
los tbl idl_real4 StringPlot ! line of sight plot using table
-1 DnSavePlot
100. DtSavePlot
-215. ObsPosX
0. ObsPosY
0. ObsPosZ
5.0 OffsetAngle ! rotate around with 5 degree resolution
32. rSizeImage
0. xOffset
0. yOffset
3. rOccult
0.5 MuLimbDarkening
300 nPix
AiaXrt NameLosTable
lin mhd idl StringPlot ! field line plot
-1 DnSavePlot
10. DtSavePlot
B NameLine ! B - magnetic field line, U - stream line
F IsSingleLine
2 nLine
-2.0 xStartLine
0.0 yStartLine
3.5 zStartLine

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 91

F IsParallel
-1.0 xStartLine
1.0 yStartLine
-3.5 zStartLine
T IsParallel
eqr eqr idl StringPlot ! Equatorial (magnetic) field line tracing info
1000 DnSavePlot
-1. DtSavePlot
20 nRadius ! Starting points on the SM equatorial plane
25 nLon
3.0 RadiusMin
10.0 RadiusMax
eqb eqb tec StringPlot ! Minimum B surface plot
1000 DnSavePlot
-1. DtSavePlot
20 nRadius ! Starting points on the SM equatorial plane
25 nLon
3.0 RadiusMin
10.0 RadiusMax
60.0 LongitudeMin
300.0 LongitudeMax
dpl MHD tec StringPlot ! dipole slice Tecplot (ONLY!) plot
-1 DnSavePlot
10. DtSavePlot
-10. xMinCut
10. xMaxCut
-10. yMinCut
10. yMaxCut
-10. zMinCut
10. zMaxCut
slc MHD tec StringPlot ! general slice Tecplot (ONLY!) plot
-1 DnSavePlot
10. DtSavePlot
-10. xMinCut
10. xMaxCut
-10. yMinCut
10. yMaxCut
-10. zMinCut
10. zMaxCut
0. xPoint
0. yPoint
0. zPoint
0. xNormal
0. yNormal
1. zNormal

blk MHD tec StringPlot ! general block Tecplot (ONLY!) plot
-1 DnSavePlot
10. DtSavePlot
5. xPoint
1. yPoint
1. zPoint

92 CHAPTER 3. INPUT PARAMETERS

ieb nul tec StringPlot !IE grid field line plots Tecplot (ONLY!)
1000 DnSavePlot
-1. DtSavePlot
lcb int tec StringPlot !last closed field line plots with integrals
1000 DnSavePlot !Tecplot (ONLY!)
-1. DtSavePlot
6. Radius
36 nLon
shl MHD idl StringPlot
10 DnSavePlot
-1. DtSavePlot
GEO TypeCoordPlot
5.6 rMin
7.6 rMax
0.5 dRad ! only read if rMin /= rMax
0. LonMin
360. LonMax
10. dLon ! only read if LonMin /= LonMax
-90. LatMin
90. LatMax
10. dLat ! only read if LatMin /= LatMax
shk HD idl StringPlot
10 DnSavePlot
-1. DtSavePlot
-10.0 DivuDxMin [km/s]
1.2 rMin
25.0 rMax
0. LonMin
360. LonMax
1. dLon
-90. LatMin
90. LatMax
1. dLat
box MHD idl StringPlot
1 DnSavePlot
-10.0 DtSavePlot
SYS TypeCoordPlot
0.0 x0
0.0 y0
1.5 z0
2.0 xSize
.01 dX ! only read if xSize /= 0
0.2 ySize
0.01 dY ! only read if ySize /= 0
3.0 zSize
0.01 dZ ! only read if zSize /= 0
0.0 xAngle [deg]
90.0 yAngle [deg]
0.0 zAngle [deg]
los dem idl_ascii StringPlot
4 DnSavePlot

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 93

-1. DtSavePlot
HGR TypeCoord
216 ObsPosX
0 ObsPosY
0 ObsPosZ
0 x0
0 y0
2 xLen
0.1 dX
2 yLen
0.1 dY
0.0 TempMin
5 LogTeMinDEM
8 LogTeMaxDEM
0.1 DLogTeDEM
los fux idl_ascii StringPlot
4 DnSavePlot
-1. DtSavePlot
HGR TypeCoord
216 ObsPosX
0 ObsPosY
0 ObsPosZ
0 x0
0 y0
2 xLen
0.1 dX
2 yLen
0.1 dY
0.0 TempMin
SPECTRUM_chianti_tbl.dat NameSpmTable
F UseUnobserved
400 LambdaMin
410 LambdaMax
0.1 DLambda
T UseAlfven
T UseDoppler
0.0 DLambdaIns
F UseIonFrac
F UseIonTemp
los nbi idl_ascii StringPlot
4 DnSavePlot
-1. DtSavePlot
HGR TypeCoord
216 ObsPosX
0 ObsPosY
0 ObsPosZ
0 x0
0 y0
2 xLen
0.1 dX
2 yLen

94 CHAPTER 3. INPUT PARAMETERS

0.1 dY
0.0 TempMin
SPECTRUM_chianti_tbl.dat NameSpmTable
F UseIonFrac
eit195response.out NameResponse
los phx idl_ascii StringPlot
4 DnSavePlot
-1. DtSavePlot
HGR TypeCoord
216 ObsPosX
0 ObsPosY
0 ObsPosZ
1 x0
1 y0
2 xLen
0.2 dX
2 yLen
0.2 dY
0 TempMin
PHOTOEXC_6376.2900.dat NamePhxTable
6375 LambdaMin
6378 LambdaMax
0.1 DLambda
T UseAlfven
T UseDoppler
0.02 DLambdaInstrument
F UseIonFrac
F UseIonTemp
rfr tec rwi StringPlot
10 DnSavePlot
-1.0 DtSavePlot
-67.92 ObsPosX
200.40 ObsPosY
-26.91 ObsPosZ

1.5 GHz 500 MHz 100 MHz StringRadioFrequency
4.0 xSizeImage
4.0 ySizeImage
100 nPixX
100 nPixY
los ins idl_real4 StringPlot ! line of sight plot using table
-1 DnSavePlot
100. DtSavePlot
soho:c3 sta:euvi stb:cor2 StringsInstrument
buf MHD idl StringPlot
-1 DnSavePlot
1 hour DtSavePlot
bx0 MHD idl_ascii StringPlot ! bx=0(on z) isosurface plot with MHD data
100 DnSavePlot
-1. DtSavePlot
-10. xMinCut
10. xMaxCut

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 95

-10. yMinCut
10. yMaxCut
-10. zMinCut
10. zMaxCut
-1 DxSavePlot

The #SAVEPLOT command determines the number and type of plot files saved from BATS-R-US.
The nPlotFile parameter sets the number of plot files to be saved. For each plot file, the StringPlot parameters

defines the format and the content as detailed below. The PlotString is always followed by the plotting frequencies
DnSavePlot and DtSavePlot that determine the frequency of saves in temrs of time steps and simulation time, respec-
tively. The rest of the parameters read for a given plot file depends on StringPlot.

StringPlot must contain the following 3 parts in the following order

PlotForm PlotArea PlotVar

Each of these parts can have different values. Most (but not all) combinations are valid. The PlotForm can have one
of the following values:

tec - Node based Tecplot format
tcp - Cell centered Tecplot format
hdf - HDF5 format (for VisIt)
idl/idl_real4 - Single precision binary "IDL" format
idl_real8 - Double precision binary "IDL" format
idl_ascii - ASCII "IDL" format
idl_tec - ASCII format with Tecplot header

The node based Tecplot format (for most plot areas) interpolates data to the grid cell corners (nodes). The cell centered
Tecplot, HDF and IDL formats save the cell center values. The HDF output works only if the HDF library is installed,
the appropriate parallel HDF module is loaded and BATSRUS/SWMF is configured with the -hdf flag. The ”IDL”
format can be read with the IDL visualization macros (read data and animate data) in BATSRUS/Idl or with the
SpacePy python package. The ASCII ”IDL” format can be easily read with any other plotting software. The ”IDL”
file format is described at the beginning of the share/Library/src/ModPlotFile.f90.

The PlotArea string defines a 1, 2, or 3D volume for plotting:

1d - 1D cut along the X axis (saves tree file)
2d - 2D cut (like Z=0) (saves tree file)
3d - full 3D volume (saves tree file)
3D - full 3D volume including cells outside the "box" (saves tree file)
x=0 - full x=0 plane: average for symmetry plane
y=0 - full y=0 plane: average for symmetry plane
z=0 - full z=0 plane: average for symmetry plane
cut - 3D, 2D or 1D cut along (curvilinear) coordinates (IDL and TCP)

or a 2D rectangular cut (node based Tecplot)
bx0 - bx=0 (along z direction) isosurface plot
dpl - cut at dipole ’equator’, uses PLOTRANGE to clip plot
slc - 2D slice defined with a point and normal, uses PLOTRANGE to clip plot
shl - spherical shell in given coordinate system (1, 2 or 3D)
sln - spherical shell with ln(r) radial coordinate
slg - spherical shell with log10(r) radial coordinate
shk - shock surface extracted on a lon-lat grid. Limited in radial distance.
box - cartesian box in given coordinate system (1, 2, or 3D)
los - line of sight integrated plot
lin - one dimensional plot along a field or stream or current line

96 CHAPTER 3. INPUT PARAMETERS

blk - 3D single block cell centered data, block specified point location
rfr - radiotelescope pixel image plot
eqr - field lines traced from the magnetic equatorial plane
eqb - minimum B surface on a grid defined on the magnetic equatorial plane
ieb - field lines traced from a subset of the IE coupled grid
lcb - last closed field lines
buf - coupling buffer between two components

The 1d, 2d and 3d cuts save the AMR tree information into a .tree file. This can be used for reconstructing the full grid
and use the data with the READAMR library, for example.

For the PlotArea ’bx0’ which is the bx=0 on z direction isosurface plot, an extra plot variable ’z’ will be added as
the first plot variable in addition to the PlotVar string. This extra plot variable ’z’ records the position of the isosurface.

For IDL and cell centered Tecplot (tcp) plots the PlotArea = ’cut’ can be used to create cuts.
The PlotVar string defines the plot variables and the equation parameters. It also controls whether or not the

variables will be plotted in dimensional values or as non-dimensional values:

CAPITALIZED - dimensional
lower case - dimensionless

’var’ - vars: READ FROM PARAMETER FILE
pars: READ FROM PARAMETER FILE

’all’ - vars: all state variables defined in the equation module
pars: g

’hd’ - vars: Primitive_Variables
pars: g rbody

’mhd’ - vars: Primitive_Variables Jx Jy Jz
pars: g rbody

’ful’ - vars: Primitive_Variables B1x B1y B1z e Jx Jy Jz
pars: g rbody

’raw’ - vars: Conservative_Variables P b1x b1y b1z divb
pars: g rbody

’ray’ - vars: bx by bz lon1 lat1 lon2 lat2 status blk (if DoMapEquatorRay=F)
vars: bx by bz req1 phi1 req2 phi2 status blk (if DoMapEquatorRay=T)
pars: rbody

’eqr’ - vars: iLine l x y z rho ux uy uz bx by bz p rCurve (for all rays traced)
pars: nRadius, nLon, nPoint

’eqb’ - vars: z PrimVarMinB rCurve xZ0 yZ0 zZ0 PrimVarZ0 rCurveZ0 (B is in SM coordinates)
’flx’ - vars: rho mr br p jr pvecr

pars: g rbody
’bbk’ - vars: dx pe blk blkall

pars:
’pos’ - vars x y z (PlotArea=’lin’ only)

pars:
’sol’ - vars: wl pb (PlotArea=’los’ only)

pars: mu
’lgq’ - vars: squash.03 squash.12 squash.2 squash-15 squash-2 squash-3 (PlotArea=’los’ only)

pars: rbody
’euv’ - vars: euv171 euv195 euv284 (PlotArea=’los’ only)

pars: mu
’sxr’ - vars: sxr (PlotArea=’los’ only)

pars: mu
’tbl’ - vars: listed in the LOS table file (PlotArea=’los’ only)

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 97

pars: mu
’dem’ - vars: DEM, EM (PlotArea=’los’ only)

pars: rbody
’fux’ - vars: flux

pars: rbody
’nbi’ - vars: intensity

pars: rbody
’phx’ - vars: flux

pars: rbody
’int’ - vars: 1/B n/B p/B (PlotArea=’lcb’ only)

pars:
’nul’ - vars: (PlotArea=’lcb’ only)

pars:
’ins’ - vars: determined by the corresponding instrument, see line-of-sight below

- pars: determined by the corresponding instrument, see line-of-sight below

Depending on StringPlot, the following parameters are also read from the parameter file in this order:

xMinCut...zMaxCut if PlotArea is ’bx0’, ’dpl’, or ’slc’
Coord1MinCut...Coord3MaxCut if PlotArea is ’cut’
nRadius nLon if PlotArea is ’eqr’ or ’eqb’
TypeCoordPlot if PlotArea is ’shl’, ’sln’, ’slg’ or ’box’
DivuDxMin if PlotArea is ’shk’
RadiusMin RadiusMax if PlotArea is ’eqr’, ’eqb’, ’shl’, ’sln’, ’slg’, ’shk’
LonMin LonMax if PlotArea is ’eqb’, ’shl’, ’sln’, ’slg’, ’shk’
LatMin LatMax if PlotArea is ’shl’, ’sln’, ’slg’, ’shk’
dRadius, dLon, dLat if PlotArea is ’sln’, ’slg’ or ’shl’ and range is nonzero.
dLon, dLat if PlotArea is ’shk’
x0, y0, z0 if PlotArea is ’box’
xSize, ySize, zSize if PlotArea is ’box’
dX, dY, dZ if PlotArea is ’box’ and associated range is nonzero.
xAngle, yAngle, zAngle if PlotArea is ’box’ (given in degrees)
xPoint yPoint zPoint if PlotArea is ’slc’, or ’blk’
xNormal yNormal zNormal if PlotArea is ’slc’
DxSavePlot if PlotForm is ’idl’ and PlotArea is not box/shl/sln/slg/shk/los/rfr/lin/eqr/eqb
NameVars if PlotVar is ’var’ or ’VAR’
NamePars if PlotVar is ’var’ or ’VAR’

Plotting range: the six parameters xMinCut ... zMaxCut define a 3D box in Cartesian coordinates. The Coord1MinCut
... Coord3MaxCut define a box in Cartesian or curvilinear coordinates.

For IDL plots, if the width in one or two dimensions is less than the smallest cell size within the plotarea, then the
plot file will be 2 or 1 dimensional, respectively. This also works for non-Cartesian grids: the cut will be a 1D curve
or a 2D surface aligned with the curvilinear coordinates. For example, from a spherical grid one can create a 1D cut
along an arbitrary radial direction or along a circle, a 2D cut with fixed radius, fixed longitude or fixed latitude, or
a spherical-wedge-shaped 3D cut. Note that the limits of the first coordinate are always given as true radial distance
(even for radially stretched spherical grids), while the longitude and latitude limits are given in degrees. The output file
will contain 1, 2 or 3 of the radial, the longitude and latitude (in degrees) coordinates instead of the X, Y, Z coordinates.
If possible, the data will be averaged to the 2D cut surface during the postprocessing.

For cell centered Tecplot files the cuts work the same way as for IDL, but 0 width cuts will produce two cells across
instead of interpolating to the central plane. On the other hand, the cell centered Tecplot output retains the original
AMR grid structure.

For Tecplot plots (PlotForm=’tec’) and PlotArea=’dpl’ or ’slc’ the plot range clips the cut plane. For node based
Tecplot files with PlotArea ’cut’, the xMin .. zMax parameters are read but interpreted differently from IDL. Cuts are

98 CHAPTER 3. INPUT PARAMETERS

entire x, y, or z equal constant planes (1D or 3D cuts are not implemented). For x constant, for example, the y and z
ranges do not matter as long as they are wider than the x range. The slice will be located at the average of xMinCut
and xMaxCut. So, for example to save a plot in a x=-5 constant plane cut, the following can be used:

-5.01 xMinCut
-4.99 xMaxCut
-10. yMinCut
10. yMaxCut
-10. zMinCut
10. zMaxCut

The xPoint, yPoint, zPoint parameters give the coordinate of a point inside a grid block for PlotArea ’blk’. For PlotArea
’slc’ they mean the coordinates of a point on the slice plane, and xNormal, yNormal, zNormal define a normal vector
to the slice plane. If the normal in any given coordinate direction is less than 0.01, then no cuts are computed for cell
edges parallel to that coordinate direction. For example, the following would result in only computing cuts on cell
edges parallel to the Z axis.

0.0 xNormal
0.0 yNormal
1.0 zNormal

The DxSavePlot parameter determines the grid resolution for IDL files:

positive value - uniform grid with cell size DxSavePlot in first coordinate
0. - uniform grid with smallest cell in the plotting area
-1. - unstructured grid with original AMR cells

The line-of-sight (PlotArea ’los’) plots calculate integrals along the lines of sight of some quantity and create a 2D
Cartesian square shaped grid of the integrated values. Only the circle enclosed in the square is actually calculated and
the corners are filled in with zeros. The image plane always contains the origin of the computational domain (usually
the center of the Sun). By default the image plane is orthogonal to the observers position relative to the origin. The
image plane can be rotated around the Z axis with an offset angle. If OffsetAngle is positive, a series of images are
created covering the full circle with the OffsetAngle resolution. If OffsetAngle is negative, only one rotated image is
created. By default the center of the image is the observer projected onto the image plane, but the center of the image
can be offset. Since the central object (the Sun) contains extremely large values, an occultational disk is used to block
the lines of sight going through the Sun. The variables which control the direction of the lines of sight and the grid
position and resolution are the following:

ObsPosX,ObsPosY,ObsPosZ - the position of the observer in (rotated)
HGI coordinates (SC,IH and OH) or the GM coordinates

rSizeImage - the radius of the LOS image
xOffset, yOffset - offset relative to the observer projected onto

the image plane
rOccult - the radius of the occulting disk
MuLimbDarkening - the limb darkening parameter for the ’wl’

(white light) and ’pb’ (polarization brightness)
plot variables.

nPix - the number of pixels in each direction

For line-of-sight Extreme Ultraviolet (EUV) and Soft X-Ray (SXR) plots, the same parametes are read as for the
wl and pb plots (above) but now the integration is carried out to the surface of the sun so rOccult should be set to
zero. MuLimbDarkening has no effect but needs to be included. Also, for line-of-sight (los) EUV images from
STEREO-A/B and SDO/AIA using the response function table both ’ins’ and ’INS’ give the same dimensional output.
Additionally, because EUV and SXR plots are configured to read in a response table specific to the EUV or SXR
instument (e.g. SOHO EIT, STEREO EUVI, Yohkoh SXT) the tables for the response need to be read in by additional
lines in the PARAM.in file. This follows the #LOOKUPTABLE command syntax e.g:

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 99

#LOOKUPTABLE
euv NameTable
load NameCommand
SC/Param/los_Eit.dat NameFile
ascii TypeFile

#LOOKUPTABLE
sxr NameTable
load NameCommand
SC/Param/los_Sxt.dat NameFile
ascii TypeFile

The possible values for NameVars with PlotArea ’los’ are listed in subroutine set plotvar los in write plot los.f90.
The line-of-site (PlotArea ’los’) plots have an option to use ’ins’/’INS’, which will fill the ObsPosX, ObsPosY, Ob-

sPosZ, rSizeImage, xOffset, yOffset, rOccult, MuLimbDarkening, nPix for SOME supported instruemts. An example
is:

los ins idl_real4 StringPlot ! line of sight plot using table
-1 DnSavePlot
100. DtSavePlot
soho:c3 sta:euvi stb:cor2 StringsInstrument

which is treated as ONE plot file in #SAVEPLOT, and the code would count how many instruments and expand the
number of plot files after reading StringsInstrument. The StringsInstrument can contain multiple strings (maximum
200 characters). The supported combinations are:

Stereo A: sta:euvi, sta:cor1, sta:cor2
Stereo B: stb:euvi, stb:cor1, stb:cor2
SDO: sdo:aia
Hinode: hinode:xrt
SOHO: SOHO:c2, SOHO:c3

The possible values for NameVars for other plot areas are listed in subroutine set plotvar in write plot common.f90.
For convenience and to avoid exceeding the line length limit of the PARAM.in file, the MHD and HD strings can be
used in NameVars. These are replaced with the appropriate primitive variables (and jx jy jz for MHD), so one can add
a few extra variables easily.

The possible values for NamePars are listed in subroutine set scalar param in write plot common.f90. The de-
fault string will be replaced with the default list of parameters, which include molecular masses (m1..m9) and charges
(q1..q9) for each fluid, the length and time units (xSI and tSI) if different from 1, the adiabatic index (g) or indexes
(g1..g9 if they are not equal, and the radius of the inner boundary (r) if present. The electron mass (me) is saved if
there is an electron fluid, and the adiabatic index of electrons (ge) if it is different from gamma.

The refracting rays based plots (PlotArea ’rfr’) plots calculate integrals along the curved rays (distorted by refrac-
tion) of the (radio) emissivity in the solar (stellar) corona and create a 2D Cartesian square shaped grid of the integrated
intensity. Only the circle enclosed in the square is actually calculated and the corners are filled in with zeros. The
image plane always contains the origin of the computational domain (usually the center of the Sun). The image plane
is orthogonal to the line coonecting the observers position to the center of the Sun. The variables which control the
direction of the lines of sight and the grid position and resolution are the following:

ObsPosX,ObsPosY,ObsPosZ - the position of the observer in the
coordinate system of the component

StringRadioFrequency - the frequency or list of frequencies
xSizeImage, ySizeImage - the size of the radio image
nPixX, nPixY - the number of pixels in each direction

100 CHAPTER 3. INPUT PARAMETERS

Most plot files are written in parallel: each processor writes out part of the data. These intermediate files are
typically ASCII for the ’tec’ and ’tcp’ formats (see the #SAVETECBINARY command, which is useful for conversion
to vtk format) and can be either binary or ASCII in ’idl’ format as chosen with the #SAVEBINARY command (default
is binary). The name of the files are

IO2/PlotArea_PlotVar_PlotNumber_TIMESTAMP_PEnumber.extension

where extension is ’tec’ for the TEC/TCP and ’idl’ for the IDL file formats. The PlotNumber goes from 1 to nPlotFilr
in the order of the files in PARAM.in. The TIMESTAMP contains time step, simulation time or date-time information
depending on the settings in the #SAVEPLOTNAME command.

After all processors wrote their plot files, processor 0 writes a small ASCII header file named as

IO2/PlotArea_PlotVar_PlotNumber_TIMESTAMP.headextension

where headextension is:

’T’ for TEC/TCP file format
’h’ for IDL file format

The line of sight integration produces TecPlot and IDL files directly:

IO2/los_PlotVar_PlotNumber_TIMESTAMP.extension

where extension is ’dat’ for TecPlot and ’out’ for IDL file formats.
The shell plot area (’shl’, ’sln’, ’slg’) can be used to extract a spherical shell defined by radius, longitude and latitude

ranges in the coordinate system given by TypeCoordPlot. Setting TypeCoordPlot=”SYS” means that the coordsystem
is the same as used by the model. If the range has extent zero in one or two coordinates, the shell becomes a 2D or 1D
slice (for example 2D Lon-Lat, r-Lon, r-Lat surfaces, or 1D circle at fixed latitude, or a radial line with fixed longitude
and latitude). The ’sln’ and ’slg’ are uniform in the logarithm of the radius, the former saves ln(r) into the file, the
latter the 10-based lg(r). The meaning of the radial resolution dR becomes the size of the first cell at the minimum
radius. The minimum and maximum radii are read as normal radii (not logarithm). The output is a single file in IDL
or Tecplot format.

The shock surface (’shk’) is extracted along radial lines started from a longitude-latitude grid. The surface is
defined by the smallest value of div u*dx along each radial line. If the minimum div u*dx is larger than DivuDxMin (a
negative value in velocity units), there is no shock surface. The output always contains DivuDx and the radial distance
of the surface as additional plot variables.

The box plot area (’box’) can be used to extract a Cartesian box defined by the center position and the size (length
of the edges) and angles by which it is rotated around the axes of the coordinate system given by TypeCoordPlot. If
the range has extent zero in one or two coordinates, the box becomes a 2D or 1D slice (for example 2D X-Y, X-Z, Y-Z
surfaces, or 1D line along the X, Y or Z axis). The output is a single file in IDL or Tecplot format.

Default is nPlotFile=0, so no plot files are saved.

#RADIOEMISSION command

#RADIOEMISSION
simplistic TypeRadioEmission

This command is used for ’rfr’ plots (see #SAVEPLOT). It allows the selection of mechanisms for radio emission
(’bremsstrahlung’ or ’simplistic’ mechanism, which interpolates between Bremsstrahlung and contributions from non-
thermal emission at critical and quarter-of-critical densities, the different contributions being weighted quite arbitrarily.
Default is ’simplistic’.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 101

#NOREFRACTION command

#NOREFRACTION
T UseNoRefraction

This command allows switching off the radio wave referaction to evaluate how the refraction affects the images
obtained with ’rfr’ plots (see #SAVEPLOT). Default is switched on (UseNoRefraction=F).

#SAVETECPLOT command

#SAVETECPLOT
T DoSaveOneTecFile

This command only works with 3D tecplot file (see #SAVEPLOT). It allows saving a single direct access formatted
tecplot data/connectivity file. Post processing is still needed because the tecplot file is separated into 3 different files:
the header file, the data file and the connectivity file.

If DoSaveOneTecFile is false, save separate tecplot data/connectivity for each processor. On some systems, saving
the data/connectivity into a single file might not work.

The default value is false.

#INSTRUMENT command

#INSTRUMENT
sdo:aia StringInstrument
0 OffsetAngle
1.25 rSizeImage
0 xOffset
0 yOffset
0 rOccult
0 MuLimbDarkening
512 nPix

This command overwrites the default parameters of instrument StringInstrument that were set by a previous #SAVE-
PLOT command. In the above example the size of the synthetic AIA image is set to 1.25 instead of default value
1.98.

#SAVEPLOTNAME command

#SAVEPLOTNAME
T UsePlotNameStep
T UsePlotNameTime
F UsePlotNameDateTime

The TIMESTAMP of plot files (see #SAVEPLOT) can contain the time step in the nSTEP format, the simulation time
in the tSIMTIME format and the date and time in the eYYYYMMDD-HHMMSS-MSC format. Any combination
of these logicals are allowed

The default values are UsePlotNameStep and UsePlotNameTime true and UsePlotNameDateTime false.

#SAVELOGNAME command

#SAVELOGNAME
T UseLogNameStep
F UseLogNameDateTime

102 CHAPTER 3. INPUT PARAMETERS

The TIMESTAMP part of the names of logfiles (see #LOGFILE), satellite files (see #SATELLITE) and magne-
tometer files (see #MAGNETOMETER) can be controlled with the logicals UseLogNameStep and UseLogName-
DateTime. If UseLogNameStep is true, the TIMESTAMP will contain the time step in the form nTIMESTEP (see
#NSTEP command). If UseLogNameDateTime is true, the TIMESTAMP will contain the date and time in the form
eYYYYMMDD-HHMMSS. If both logicals are true, both the step and the date-time will be in the TIMESTAMP. If

both are false, the TIMESTAMP will be empty.
The default is UseLogNameStep true and UseLogNameDateTime false.

#SAVEBINARY command

#SAVEBINARY
T DoSaveBinary used only for ’idl’ plot file

Default is .true. Saves unformatted IO2/*.idl files if true. This is the recommended method, because it is fast and
accurate. The only advantage of saving IO2/*.idl in formatted text files is that it can be processed on another machine or
with a different (lower) precision. For example PostIDL.exe may be compiled with single precision to make IO2/*.out
files smaller, while BATSRUS.exe is compiled in double precision to make results more accurate.

#SAVETECBINARY command

#SAVETECBINARY
F DoSaveTecBinary

If true, save Tecplot data and connectivity information in binary format. Currently this only works for 3D tec and tcp
files. Note that the resulting files are not directly readable by Tecplot, but can be converted to other formats.

Default is false.

#PLOTFILENAME command

#PLOTFILENAME
hour NameMaxTimeUnit

For time accurate runs the plot filenames contain an 8-charcter timestamp string. The NameMaxTimeUnit string
determines the content of this string.

If the longest time unit is hours or shorter, the string contains the simulation time. If the time unit is days or longer
the string contains the physical date (set by the #STARTTIME command) and time information.

For NameMaxTimeUnit=’hour’ the string contains the simulation time described by a 4-character string for hours,
and two 2-character strings for minutes and seconds, respectively. For NameMaxTimeUnit=’hr’ the string contains
the simulation time described by a 2-character strings for hours, minutes, and seconds with a decimal point and one
decimal digit. For NameMaxTimeUnit=’minute’ the first 2 characters describe the minutes, and the rest is seconds
including 3 decimal digits. NameMaxTimeUnit=’second’ gives the simulation time up to 100 seconds with 5 dec-
imal digits. NameMaxTimeUnit=’millisecond’ (’microsecond’, ’nanosecond’) give the simulation time up to 1000
milliseconds (microseconds, nanoseconds) with 4 decimal digits.

For time unit ’date’ the full 14-character date-time string (YYYYMMDDHHMMSS) is used. For time units ’day’,
’month’, ’yr’ and ’year’ an 8-character-long substring of the date-time string is used. For NameMaxTimeUnit=’year’
the time stamp will contain the four digit year, and the two-digit month and day. For NameMaxTimeUnit=’yr’ the
last two digits of the year, and the month, day and hour are used. For NameMaxTimeUnit=’month’ the month,
day, hour, and minute are used. For NameMaxTimeUnit=’day’ the day, hour, minute and seconds are used. For
NameMaxTimeUnit=’timestep’ only the timestep is used.

The #PLOTFILENAME command and the NameMaxTimeUnit parameter are saved into the restart header file so
that the #PLOTFILENAME command does not have to be repeated in restarted runs (unless the unit is changed).

The default value is NameMaxTimeUnit=’hour’.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 103

#SAVEONEFILE command

#SAVEONEFILE
T DoSaveOneIdlFile

Save IDL files using MPI-IO. All processors write to one *.idl file to reduce file numbers.

#SAVEINITIAL command

#SAVEINITIAL
T DoSaveIntial

Save plots and log/satellite files at the beggining of the session. Default is DoSaveInitial=.false. except for the first
time accurate session (when simulation time is zero) when the initial state is always saved.

#SAVEPLOTSAMR command

#SAVEPLOTSAMR
F DoSavePlotsAmr

Save plots before each AMR. Default is DoSavePlotsAMR=.false.

#FLUSH command

#FLUSH
F DoFlush

If the DoFlush variable is true, the output is flushed when subroutine ModUtility::flush unit is called. This is used in
the log and satellite files. The flush is useful to see the output immediately, and to avoid truncated files when the code
crashes, but on some systems the flush may be very slow.

The default is to flush the output, i.e. DoFlush=T.

3.8.12 Eruptive event generator
#CME command

#CME
T UseCme ! Rest is read if UseCme is true
T DoAddFluxRope
2 h tDecayCme
0 LongitudeCme [deg]
0 LatitudeCme [deg]
0 OrientationCme [deg]
GL TypeCme GL/TD/TD14/TD22/SPHEROMAK
5.0 BStrength [Gs]
1 iHelicity
1.03 Radius [Rs]
0.3 Stretch [Rs]
1.8 ApexHeight [Rs]

#CME
T UseCme ! Rest is read if UseCme is true
T DoAddFluxRope
-1.0 tDecayCme

104 CHAPTER 3. INPUT PARAMETERS

0 LongitudeCme [deg]
0 LatitudeCme [deg]
0 OrientationCme [deg]
SPHEROMAK TypeCme
5.0 BStrength [Gs]
-1 iHelicity
1.03 Radius [Rs]
0.3 Stretch [Rs]
1.8 ApexHeight [Rs]
600 uCme [km/s]

If UseCme is false, no CME gnerator is applied. If UseCme is true, the CME generator is applied via the boundary
condition. If, in addition to this, DoAddFluxRope is true, then the flux rope is added as a ”user perturbation” at the
beginning of the session. The tDecayCme determines how long it takes for the CME related boundary conditions
to decay toward zero. If tDecayCme is -1, there boundary conditions do not decay. If tDecayCme is positive, the
boundary conditions linearly decay from the original values to zero in tDecayCme time.

The LongitudeCme and LatitudeCme parameters characterize location of the superimposed configuration. They
provide the longitude and latitude in degrees, of the configuration center. Third parameter, OrientationCme, chaarac-
terizes the CME orientation. The recommended value of OrientationCme is the counterclockwise angle, in degrees,
between the local parallel (the horizontal axis of solar magnetogram), and the “major direction of the horizontal solar
magnetic field” in the active region from which the eruption ooccurs. For different types of the eruptive event gener-
ator this major field direction may be quantified in somewhat different way. For example, for GL soluution this is the
direction from the center of positive magnetic spot to that of the negative magnetic spot, which can be determined from
the observed magnetogram for a simple bi-polar region. For the modified TD generator (TD14) this is the direction
of the magnetic field acting on the super-imposed current filament, which may be found based on 3D reconstruction
of the solar magnetic field. Depending on this input parameter, the simulated CME configuration will be properly
orriented to better fit the observed solar magnetic field.

The latest implementation for the Gibson-Low eruptive event generator (TypeCme=GL) follows the paper Borovikov,
D., I. V. Sokolov, W. B. Manchester, M. Jin, and T. I. Gombosi (2017), Eruptive event generator based on the Gibson-
Low magnetic configuration, J. Geophys. Res. Space Physics, 122, 7979, doi:10.1002/2017JA024304.

BStrength (denoted as B0 in the cited paper) is the characteristic magnetic field, in Gauss, such that the magnetic
field at the center of configuration (prior to stretching) equals about 0.7 B0.

The integer iHelicity defines positive (+1) or negative (-1) helicity by setting the sign of the poloidal field. The
sign of the toroidal field is fixed, as it points from the positive to the negative spot of the active region.

The Radius parameter sets of the radius of the last magnetic (spherical) surface confining all currents (before
stretching).

The Stretch parameter (”a” in the paper) is the scale of stretching transformation (see details in the paper). Apex-
Height is the altitude of top of configuration from the solar surface. It is expected that Radius < ApexHeight <
2*Radius.

NOTE1: Before 08.15.2022 the sign of BStrength was used to set helicity. The negative sign corresponded to the
positive helicity (which was essentially a bug).

NOTE2: If you have an outdated parameter file you can convert it to the new format as follows: 1. Move line
for BStrength to have it just below ”GL TypeCme” line and add the line setting iHelicity. 2. Move line for reading
Radius just below the line for BStrength. 3. RESCALE the OLD data for BStrength as follows: BStrengthNew =
13.1687517342067082*BStrengthOld*Radius**2 4. The old line for reading Distance should be converted to the line
for reading ApexHeight = Distance + Radius - Stretch - 1 5. Line for reading pBackground should be removed

In addition to the above parameters uCme is read, controlling the speed of the CME self-similar expansion

#CME
T UseCme
T DoAddFluxRope
180.0 LongitudeCme [deg]

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 105

15.0 LatitudeCme [deg]
30.0 OrientationCme[deg]
TD TypeCme TD/TITOV-DEMOULIN
+1 iHelicty
0.5 RadiusMajor [R_s]
0.2 RadiusMinor [R_s]
0.2 Depth [R_s]
F UsePlasmaBeta
1.000E+16 Mass [g]
readbstrap TypeBStrap readbstrap/getbstrap/none
5 bStrapping [Gs]
steady TypeCharge none/steady/moving/cancelflux
1.0 BqFraction []
0.4 qDistance [R_s]

Version with UsePlasmaBeta=.true.: ... T UsePlasmaBeta PlasmaBeta 0.1 [] 5.0e4 EjectaTemperature [K] ... steady
TypeCharge none/steady/moving/cancelflux 5 BStrapping [Gs] 0.4 qDistance [R s]

version with the flux cancelation ... cancelflux TypeCharge none/steady/moving/cancelflux 5 BqStrapping [Gs]
0.4 qDistance [R s] 5.0 ChargeUx [km/s]

#CME
T UseCme
T DoAddFluxRope
180.0 LongitudeCme [deg]
15.0 LatitudeCme [deg]
30.0 OrientationCme[deg]
TD TypeCme TD/TITOV-DEMOULIN
10.0 BcTubeDim [Gs]
0.5 RadiusMajor [R_s]
0.2 RadiusMinor [R_s]
0.2 Depth [R_s]
F UsePlasmaBeta
1.000E+16 Mass [g]
readbstrap TypeBStrap readbstrap/getbstrap/none
5 bStrapping [Gs]
steady TypeCharge none/steady/moving/cancelflux
1.0 BqFraction []
0.4 qDistance [R_s]

Version with UsePlasmaBeta=.true.: ... T UsePlasmaBeta PlasmaBeta 0.1 [] 5.0e4 EjectaTemperature [K] ... steady
TypeCharge none/steady/moving/cancelflux 5 BStrapping [Gs] 0.4 qDistance [R s]

BcTubeDim, in Gauss, is a magnetic field at the center of totoid, which field is created by the current inside the
toroidal filament. RadiusMajor and RadiusMinor are characteristics of the toroid shape. Depth characterizes the toroid
center location below the photosphere level. Mass in kilograms is an approximate integral of density over the volume
of current filament.

To convert an outdated parameter file, with the Current in [A] and spatial scales in [m], one can convert it to the
standard format as follows:

1. RESCALE the data for Current[A] as follows: BcTubeDim[Gs] = 2.0E-03*cPi*Current[A]/RadiusMajor[m]
2. Convert all spatial scales (RadiusMajor, RadiusMinor, Depth) in meters into those is R S: Scale[R s] =

Scale[m]/6.96E+08 Or, if the scales are in megameters, the formulae are: Scale[R s] = Scale[Mm]/6.96E+02
For TD configuration, magnetic field at the center of configuration is always parallel, while the starpping field is

anti-parallel, to the x-axis. Phi-conponent of the toroidal current is positive. However, the sign of the field toroidal

106 CHAPTER 3. INPUT PARAMETERS

component may be both positive and negative, corresponding to the positive and negative helicity. To set the negative
helicity, the input parameter, BcTube, should be negative. This choice affects only the sign of helicity, but not the
direction of the poloidal magnetic field components, including the nagnetic field at the center of configuration.

#CME
T UseCme
T DoAddFluxRope
180.0 LongitudeCme [deg]
15.0 LatitudeCme [deg]
30.0 OrientationCme[deg]
TD TypeCme TD/TITOV-DEMOULIN
10.0 BcTubeDim [Gs]
0.5 RadiusMajor [R_s]
0.2 RadiusMinor [R_s]
0.2 Depth [R_s]
PlasmaBeta 0.1 []
5.0e4 EjectaTemperature [K]
readbstrap TypeBStrap readbstrap/getbstrap/none
5 bStrapping [Gs]
steady TypeCharge none/steady/moving/cancelflux
1.0 BqFraction []
0.4 qDistance [R_s]

TypeCME=BREAKOUT should be described by Bart van der Holst. Please ask him for a description.
TypeCME=SPHEROMAK should be described by Igor Sokolov. Please ask him for a description.
There is no CME by default.

#CMETIME command

#CMETIME
0.0 tStartCme [sec]

The tStartCme variable contains the time in seconds when the flux-rope is added via the #CME command and is relative
to the initial start time. It is saved into the restart header file, so if the CME run is restarted with DoAddFluxRope
set to F and the tDecayCme is positive the CME related boundary conditions continue to decay to zero in tDecayCme
time.

3.8.13 Amr parameters
#AMRINITPHYSICS command

#AMRINITPHYSICS
3 nRefineLevelIC

Defines number of physics (initial condition) based AMR-s AFTER the geometry based grid refinement was finished.
Only useful if the initial condition has a non-trivial analytic form.

#REGION command

required=”F” required=”F” required=”F”

#REGION
region1 NameRegion

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 107

box StringShape
-64.0 xMinBox
-16.0 yMinBox
-16.0 zMinBox
-32.0 xMaxBox
16.0 yMaxBox
0.0 zMaxBox

#REGION
region2 NameRegion
brick StringShape
-48.0 xPosition

0.0 yPosition
-8.0 zPosition
32.0 xSizeBrick
32.0 ySizeBrick
16.0 zSizeBrick

#REGION
ellipsoid NameRegion
sphere stretched StringShape
-10.0 xPosition
10.0 yPosition
0.0 zPosition

20.0 Radius
30.0 RadiusY (only read if stretched)
20.0 RadiusZ (only read if stretched)

#REGION
region3 NameRegion
shell0 StringShape
3.5 Radius1
4.5 Radius2

#REGION
region5 NameRegion
cylinderx stretched tapered
-30.0 xPosition

0.0 yPosition
0.0 zPosition

60.0 Length
20.0 Radius
25.0 RadiusPerp (only read if stretched)
5.0 Taper (only read if tapered)

#REGION
region6 NameRegion
ringz0 rotated StringShape

5.0 Height
20.0 Radius1
25.0 Radius2
10.0 xRotate (only read if rotated)

108 CHAPTER 3. INPUT PARAMETERS

10.0 yRotate (only read if rotated in 3D)
0.0 zRotate (only read if rotated in 3D)

#REGION
region7 NameRegion
conex stretched StringShape
-30.0 xPosition

0.0 yPosition
0.0 zPosition
-5.0 Height (base is at xPosition-5)
20.0 Radius
30.0 RadiusPerp (only read if stretched)

#REGION
region8 NameRegion
funnelx stretched StringShape
10.0 xPosition
20.0 yPosition
30.0 zPosition
45.0 Height
10.0 RadiusStart
20.0 Radius
25.0 RadiusPerp (only read if stretched)

#REGION
region9 NameRegion
doubleconez0 tapered StringShape
100.0 Height
20.0 Radius
2.0 Taper

#REGION
region10 NameRegion
box weight tapered StringShape
-30.0 xMinBox
-30.0 yMinBox
-2.0 xMaxBox
30.0 yMaxBox
2.0 Taper
2.0 Weight

#REGION
magnetosphere NameRegion
paraboloidx stretched StringShape
10.0 xPosition
0.0 yPosition
0.0 zPosition

-100.0 Height
30.0 Radius
20.0 RadiusPerp

#REGION

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 109

conemars NameRegion
conex0 sat:mars StringShape
350 Heeight
100 Radius

#REGION
myregion NameRegion
user StringShape

The #REGION comand allows making a library of areas in the simulation domain identified by a unique NameRegion
to be used in other commands (e.g. #AMRCRITERIALEVEL, #AMRCRITERIARESOLUTION, #HALLREGION)
to define where some action (e.g. grid refinement) should be performed. In those commands the regions can be
combined with + and - signs to form more complex shapes. For example

+dayside +tail -nearearth -nearaxis
The + sign means that a region is ”added” (more formally, take the union of the regions). The - sign means that

the region is excluded. The best way to list multiple regions is to start with the + signs and finish with the - signs. If
all regions have - signs, for example

-nearearth -nearaxis
then the interpretation is that they are excluded from the whole domain.
The StringShape parameter defines the shape of the region with the possible options. The basic shape names are

the following: ’box’, ’box gen’, ’brick’, ’brick gen’, ’conex’, ’cylinderx’, ’doubleconex’, ’funnelx’, ’paraboloidx’,
’ringx’, ’shell’, ’sphere’, and ’user’. The names that end with an ’x’ indicate the orientation of the symmetry axis.
These have alternative versions ending with ’y’ and ’z’, for example ’coney’ and ’conez’. Most of these names can be
followed by the optional ’0’, ’stretched’, ’tapered’ and ’rotated’ strings as discussed below.

The area ’box’ is a box aligned with the X, Y and Z axes, and it is given with the coordinates of two diagonally
opposite corners. The area ’brick’ has the same shape as ’box’, but it is defined with the center of the brick and the size
of the brick. The ’box gen’ and ’brick gen’ areas can be used for non-Cartesian grids to define a box in the generalized
coordinates. For example a sphere around the origin can be described as a box in generalized coordinates with radius
going from 0 to R, phi going from 0 to 360 degrees and latitude going from -90 to +90 degrees. Note that angles are
given in degrees, and radius is given even if the generalized coordinates use its logarithm.

The area ’sphere’ is a sphere around an arbitrary point, which is defined with the center point and the radius of
the sphere. The area ’shell’ consists of the volume between two concentric spherical surfaces, which is given with the
center point and the two radii. The area ’cylinderx’ is a cylinder with an axis parallel with the X axis, and it is given
with the center, the length of the axis and the radius, The areas ’cylindery’ and ’cylinderz’ are cylinders parallel with
the Y and Z axes, respectively, and are defined analogously as ’cylinderx’. The area ’ringx’, ’ringy’ and ’ringz’ are the
volumes between two cylindrical surfaces parallel with the X, Y and Z axes, respectively. The ring area is given with
the center, the height and the two radii. The ’conex’, ’doubleconex’ and ’paraboloidx’ are all aligned with the X axis
and are described by the position of the tip, the height and the radius. The ’funnelx’ is a cone with its tip chopped off.
It is described by the position of the center of the starting circle, its height, the starting radius and the ending radius.
The sign of the height specifies the orientation of the shape along its symmetry axis. Note that all these round shapes
can be made elliptical with the ”stretched” option (see below).

If the area name contains the number ’0’, the center/tip is taken to be at the origin and the Position coordinates are
not read. Note that the areas ’box’ and ’box gen’ are defined with the corners so the ’0’ cannot be used for these.

If the word ’stretched’ is added after the area name, the shape can be stretched in all directions. This allows making
an ellipsoid from a sphere, or an elliptical slab from a cylinder.

It the word ’tapered’ is used in StringShape, the Taper parameter is read and the shape is surrounded by a tapering
region of this width. This is useful when the region is used as a switch with a continuous transition between the inside
and outside, see for example the #HALLREGION command.

If the word ’rotated’ is added after the area name, the area can be rotated around the Z axis in 2D simulation, and
by 3 angles around the X, Y and Z axes (in this order) in 3D simulations. These are the Tait-Bryan angles (yaw, pitch
and roll) corresponding the X-Y-Z extrinsic rotations in a fixed coordinate system or Z-Y-X intrinsic rotations in a
rotating coordinate system.

110 CHAPTER 3. INPUT PARAMETERS

If the word ’weight’ is used in StringShape, the parameter Weight is read. The weight is the Hall factor when this
region is used by the #HALLREGION command.

If NameShape starts with ’user’, the shape is defined by the subroutine user specify region. Any parameters for
the user region should be read in the user section of the PARAM.in file.

By default there are no ”regions” defined.

#GRIDRESOLUTION command

#GRIDRESOLUTION
2.0 Resolution
initial StringShape

#GRIDLEVEL
3 nLevel
all StringShape

#GRIDLEVEL
4 nLevel
box StringShape
-64.0 xMinBox
-16.0 yMinBox
-16.0 zMinBox
-32.0 xMaxBox
16.0 yMaxBox
0.0 zMaxBox

#GRIDLEVEL
4 nLevel
brick StringShape
-48.0 xPosition

0.0 yPosition
-8.0 zPosition
32.0 xSizeBrick
32.0 ySizeBrick
16.0 zSizeBrick

#GRIDRESOLUTION
1/8 Resolution
shell0 StringShape
3.5 RadiusInner
4.5 Radius

#GRIDRESOLUTION
0.5 Resolution
sphere StringShape
-10.0 xPosition
10.0 yPosition
0.0 zPosition
20.0 Radius

#GRIDRESOLUTION
1/8 Resolution
cylinderx StringShape

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 111

-30.0 xPosition
0.0 yPosition
0.0 zPosition

60.0 Height
20.0 Radius

#GRIDRESOLUTION
1/8 Resolution
ringz0 rotated StringShape

5.0 Height
20.0 RadiusInner
25.0 Radius
10.0 xRotate
10.0 yRotate
0.0 zRotate

#GRIDRESOLUTION
1/4 Resolution
paraboloidx0 stretched StringShape
30.0 Height
10.0 Radius
12.0 RadiusPerp

#GRIDRESOLUTION
1/8 Resolution
user StringShape

The #GRIDRESOLUTION and #GRIDLEVEL commands allow to set the desired (!) grid resolution or refinement
level, respectively, in a given area. This grid resolution is only realized if either the StringShape=’initial’ resolution is
set to an equal or finer refinement than the desired resolution, for example

#GRIDRESOLUTION
1/8 Resolution
initial StringShape

or by applying adaptive mesh refinement during the run (see the #DOAMR command).
The Resolution parameter of the #GRIRDESOLUTION command usually refers to the size of the cell in the

first direction (Dx or Dr), but for logarithmic/stretched radial coordinate (see #GRIDGEOMETRY), it refers to the
resolution in the Phi coordinate in degrees. Note that this definition of resolution is different from that used in the
#AMRCRITERIARESOLUTION command for non-Cartesian grids.

Normally it is best to use the #GRIDRESOLUTION command to define the desired grid as it describes the reso-
lution in physical units, so it is independent of the number of the size of the domain and the number of root blocks.
The alternative #GRIDLEVEL command can be useful for simple numerical tests, where an algorithm is tested on
anon-uniform grid. For this command the nLevel parameter is an integer with level 0 meaning no refinement relative
to the root block, while level N is a refinement by 2 to the power N.

Note that the #REGION commands in combination with the #AMRCRITERIALEVEL and #AMRCRITERI-
ARESOLUTION commands allow even more flexibility in controlling the grid adaptation, but the initial resolu-
tion/level still has to be set by this command. However, if #AMRCRITERIALEVEL/AMRCRITERIARESOLUTION
is specified, the user should not use #GRIDLEVEL/#GRIDRESOLUTION to specify any StringShape except ’initial’,
otherwise the code will just crash.

If StringShape is set to ’initial’, it determines the number of grid adaptations used to initialize the grid. The
grid adaptations are done according to the other #GRIDLEVEL, #GRIDESOLUTION commands. The default is no

112 CHAPTER 3. INPUT PARAMETERS

refinement initially, which means that the grid is uniform at the beginning, and it is refined during the run
according to the #AMR or #DOAMR commands. This means that one has to set the initial refinement level to
get a non-uniform grid from the beginning.

The StringShape ’all’ refers to the whole computational domain, and it can be used to set the overall minimum
resolution.

For other values of StringShape, the command specifies the shape of the area. where the blocks are to be refined.
See the #REGION command for a description of these parameters. Note that ”tapering” can only be used with the
#REGION command.

If the desired grid resolution is finer than the initial resolution, then initially the grid will be refined to the initial
resolution only, but the area will be further refined in subsequent pre-specified adaptive mesh refinements (AMRs)
during the run (see the #AMR command). Once the resolution reaches the desired level, the AMR-s will not do further
refinement. If a grid block is covered by more than one areas, the area with the finest resolution determines the desired
grid resolution.

All computational blocks that intersect the area and have a coarser resolution than the resolution set for the area
are selected for refinement.

The default is a uniform grid.

#AMRLEVELS command

#AMRLEVELS
0 MinBlockLevel
99 MaxBlockLevel

Set the minimum/maximum levels that can be affected by AMR. The usage is as follows:

MinBlockLevel .ge.0 Cells can be coarsened up to the listed level but not
further.

MinBlockLevel .lt.0 The current grid is ‘‘frozen’’ for coarsening such that
blocks are not allowed to be coarsened to a size
larger than their current one.

MaxBlockLevel .ge.0 Any cell at a level greater than or equal to
MaxBlockLevel is unaffected by AMR (cannot be coarsened
or refined).

MaxBlockLevel .lt.0 The current grid is ‘‘frozen’’ for refinement such that
blocks are not allowed to be refined to a size
smaller than their current one.

This command has no effect when DoAutoRefine is .false. in the #AMR command.
Note that the user can set either #AMRLEVELS or #AMRRESOLUTION but not both. If both are set, the final

one in the session will set the values for AMR.

#AMRRESOLUTION command

#AMRRESOLUTION
0. DxCellMin
99999. DxCellMax

Serves the same function as AMRLEVELS. The DxCellMin and DxCellMmax parameters are converted into Min-
BlockLevel and MaxBlockLevel when they are read. Note that MinBlockLevel corresponds to DxCellMax and
MaxBlockLevel corresponds to DxCellMin. See details above.

This command has no effect when DoAutoRefine is .false. in the #AMR command.
Note that the user can set either #AMRLEVELS or #AMRRESOLUTION but not both. If both are set, the final

one in the session will set the values for AMR.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 113

#DOAMR command

#DOAMR
T DoAmr (the rest is only read if true)
1 DnAmr
-1.0 DtAmr
T IsStrictAmr

DoAmr is telling if you do adaptive mesh refinement (AMR) during the simulation every DnAmr step or DtAmr
intervals. For both DtAmr and DnAmr negative values mean that no AMR is performed based on that condition. If
both values are positive then DnAmr is used in steady state mode and DtAmr is used in time accurate mode. If DtAmr
is negative then DnAmr (has to be positive) is used always. If IsStrictAmr is true, we demand that the AMR is fully
performed. If the AMR would require too many grid blocks, the code stops with an error message. If IsStrictAmr is
false, the code will do a partial AMR allowed by the maximum of available blocks and continue running. For pure
geometry based AMR the IsStrictAmr=F will cause the code to skip the complete AMR if there are not enough blocks.

Defaults are DoAmr false and IsStrictAmr true.

#AMRLIMIT command

#AMRLIMIT
40. PercentCoarsen
30. PercentRefine
999999 MaxBlockAll
1e-8 DiffCriteriaLevel

This is the obsolete way of doing AMR. All users are advised to use AMR where the grid depends on geometry and
solution only, but not on the number of blocks. The #AMRCRITERIALEVEL and #AMRCRITERIARESOLUTION
and #REGION commands provide all the needed functionality.

This command sets a desired percentage of blocks to be coarsened (PercentCoarsen) and refined (PercentRefine).
In addition, the total number of grid blocks can be limited with MaxBlockAll. The criteria will be given by #AM-
RCRITERIA or #AMRCRITERIALEVEL. To maintain symmetry of the solution, it is useful to treat blocks with
similar criteria value to be coarsened and refined together. The DiffCriteriaLevel gives the tolerance so that blocks
with criteria values closer than DiffCriteriaLevel will be refined or coarsened together.

The default is to refine and coarsen blocks based on the criteria without any percentage limits.

#AMR command

#AMR
2001 DnRefine
T DoAutoRefine ! read if DnRefine is positive
0. PercentCoarsen ! read if DoAutoRefine is true
0. PercentRefine ! read if DoAutoRefine is true
99999 MaxTotalBlocks ! read if DoAutoRefine is true

This command is kept for backwards compatibility. The #DOAMR and #AMRLIMIT commands offer more control.
The DnRefine parameter determines the frequency of adaptive mesh refinements in terms of total steps nStep.
When DoAutoRefine is false, the grid is refined by one more level based on the areas and resolutions defined by the

#GRIDLEVEL and #GRIDRESOLUTION commands. If the number of blocks is not sufficient for this pre-specified
refinement, the code stops with an error.

When DoAutoRefine is true, the grid is refined or coarsened based on the criteria given in the #AMRCRITERIA
command. The number of blocks to be refined or coarsened are determined by the PercentRefine and PercentCoarsen
parameters. These percentages are approximate only, because the constraints of the block adaptive grid may result in
more or fewer blocks than prescribed. The total number of blocks will not exceed the smaller of the MaxTotalBlocks

114 CHAPTER 3. INPUT PARAMETERS

parameter and the total number of blocks available on all the PE-s (which is determined by the number of PE-s and
the MaxBlocks parameter in ModSize.f90).

Default for DnRefine is -1, i.e. no run time refinement.

#AMRCRITERIA command

#AMRCRITERIA
3 nRefineCrit (1 to3)
gradP TypeRefine
0.2 CoarsenLimit
0.8 RefineLimit
user TypeRefine
0.5 CoarsenLimit
0.5 RefineLimit
Transient TypeRefine
Rho_dot TypeTransient ! Only if ’Transient’ or ’transient’

Note: ”#AMRCRITERIALEVEL” gives even more control.
This command defines the criteria to select blocks for refinement or coarsening when the #AMR command is used

with DoAutoRefine=T parameter. Up to 3 criteria can be used. Refinement is done if ANY of the criteria demand it,
and the block can be refined (a block cannot be refined if the refinement level would exceed the maximum level or too
many blocks would be created.

Coarsening is done if ALL the criteria allow it and the block can be coarsened (a block cannot be coarsened if the
block level is already at the minimum level, or a neighboring block is finer).

The CoarsenLimit and RefineLimit parameters set the coarsening and refinement thresholds for the criteria that are
given in I/O units.

If nRefineCrit is set to zero, the blocks are not ordered. This can be used to refine or coarsen all the blocks
limited by the minimum and maximum levels only (see commands #AMRLEVELS and #AMRRESOLUTION). If
nRefineCrit is 1, 2, or 3 then the criteria can be chosen from the following list (all criteria are based on the maximum
over the cells in the grid block):

’gradP’ - gradient of pressure
’gradlogP’ - gradient of log10(P)
’pjumpratio’ - pmax/pmin in neighboring cells
’gradlogrho’ - gradient of log10(rho)
’J’ - magnitude of current
’J2’ - current squared
’currentsheet’ - current sheet (radial B changes sign)
’-divU’ - divergence of velocity times -1
’-divUdX’ - divergence of velocity times cell size times -1
’user’ - criteria defined in the user module
’transient’ - criteria is defined by the TypeTransient parameter.

The possible choices for TypeTransient:

’P_dot’ - relative change of pressure (dP/dt)/P
’T_dot’ - relative change of temperature (dT/dt)/T
’Rho_dot’ - relative change of density (drho/dt)/rho
’RhoU_dot’ - relative change of momentum (d|rhoU|/dt)/|rhoU|
’B_dot’ - relative change of magnetic field (d|B|/dt)/|B|
’meanUB’ - max[(d|rhoU|/dt)/|rhoU|] * max[(d|B|/dt)/|B|]
’Rho_2nd_1’ - (|d2Rho/dx2| + |d2Rho/dy2| + |d2Rho/dz2|)/rho
’Rho_2nd_2’ - (|d2Rho/dx2 + d2Rho/dy2 + d2Rho/dz2|)/rho

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 115

By default there are no criteria, so all blocks are refined or coarsened together.

#AMRCRITERIALEVEL command

#AMRCRITERIALEVEL
5 nCriteria
J2 +tail -nearbody TypeCriteria
0.1 CoarsenLimit
0.75 RefineLimit
1 MaxLevel
J2 +tail -nearbody TypeCriteria
1.0 CoarsenLimit
2.0 RefineLimit
2 MaxLevel
level TypeCriteria
2 RefineTo
3 CoarsenFrom
dx +nearbody TypeCriteria
0.5 RefineTo
0.25 CoarsenFrom
transient P_dot TypeCriteria
1.0 CoarsenLimit
2.0 RefineLimit
1 MaxLevel
T UseSunEarth ! Only if there are any ’transient’ crit
0.00E+00 xEarth ! Only if UseSunEarth is true
2.56E+02 yEarth ! Only if UseSunEarth is true
0.00E+00 zEarth ! Only if UseSunEarth is true
5.00E-01 InvD2Ray ! Only if UseSunEarth is true

#AMRCRITERIARESOLUTION
3 nCriteria
dphi TypeCriteria
3.0 RefineTo
1.5 CoarsenFrom
dphi Innershell TypeCriteria
1.5 RefineTo
0.75 CoarsenFrom
currentsheet TypeCriteria
0.5 CoarsenLimit
0.5 RefineLimit
1.5 MaxResolution

#AMRCRITERIACELLSIZE
3 nCriteria
J2 +tail -nearbody TypeCriteria
0.1 CoarsenLimit
0.75 RefineLimit
0.25 MaxResolution
J2 +tail -nearbody TypeCriteria
1.0 CoarsenLimit
2.0 RefineLimit

116 CHAPTER 3. INPUT PARAMETERS

0.125 MaxResolution
error Bx -nearbody TypeCriteria
0.025 CoarsenLimit
0.1 RefineLimit
0.5 MaxResolution
1.0e-2 SmallError ! Only if there are any ’error’ crit

The #AMRCRITERIALEVEL, #AMRCRITERIARESOLUTION or #AMRCRITERIACELLSIZE command defines
the criteria to select blocks for refinement or coarsening when the #DOAMR command is used with DoAmr=T pa-
rameter. In one session you can only have one #AMRCRITERIALEVEL, #AMRCRITERIARESOLUTION or #AM-
RCRITERIACELLSIZE command. #AMRCRITERIARESOLUTION or #AMRCRITERIACELLSIZE is equvilent
with #AMRCRITERIALEVEL but works with cell size (MaxResolution) instead of grid level (MaxLevel).

The #AMRCRITERIARESOLUTION command defines the criteria to refine / coarsen based on the physical cell
size in the first dimension (dx/dr) except for logarithmic or generalized radial coordinate when the size in the phi
direction is used in degrees. Typecriteria =”dx/dr/dphi” can be used.

The #AMRCRITERIACELLSIZE command defines the criteria to refine / coarsen based on the maximum length
of the cell edges inside a block. For non-cartesian grid this results in varying AMR level but roughly uniform cell sizes
for a given resolution. Note that this is different from the definition used in the #GRIDRESOLUTION command.

The number of criteria is given by the nCriteria parameter. For each criteria the first parameter TypeCriteria
determines its type. TypeCriteria=”level” and ”dx/dr/dphi” are geometric criteria, while any other values (that depend
on the solution) are non-geometric. Up to 3 different types of non-geometric criteria can be used, but there can be
multiple criteria (with different criteria levels and/or geometric restrictions) for the same non-geometric TypeCriteria.

For the geometric criteria there are two additional parameters read: RefineTo and CoarsenFrom. These are given
either as grid level (for TypeCriteria=”level”) or as grid resolution (for TypeCriteria=”dx/dr/dphi”). In the above
example the ”level” criteria tries to refine the grid to level 2 (and coarsen from level 3 down to level 2) everywhere in
the computational domain. The ”dx” criteria above tries to refine to a grid resolution 0.5 (and coarsen from 0.25 to
0.5) inside the region named ”nearbody” that has to be defined by the #REGION command.

For non-geometric criteria there are three additional parameters read: CoarsenLimit, RefineLimit and MaxLevel
(for #AMRCRITERIALEVEL) or MaxResolution (for #AMRCRITERIARESOLUTION, #AMRCRITERIACELL-
SIZE). The TypeCriteria determines how the criterion value (a positive real number in ”I/O” units) is calculated. In
the above example TypeCriteria=”J2” is the largest value of the current density squared inside the grid block. The
CoarsenLimit and RefineLimit are positive real numbers that are compared to the criterion value, for every grid block.
If the criterion value is above the RefineLimit then the block will be refined if it has not yet reached the grid level
or grid resolution defined by the MaxLevel (for #AMRCRITERIALEVEL) or MaxResolution (for #AMRCRITERI-
ARESOLUTION, #AMRCRITERIACELLSIZE) parameter. If the criterion value is below the CoarsenLimit then the
block is allowed to get coarsened according to this criterion.

Refinement is done if ANY of the criteria demand it, and the block can be refined. A block cannot be refined if the
refinement level would exceed the maximum grid level or too many blocks would be created.

Coarsening is done if ALL the criteria allow it and the block can be coarsened. A block cannot be coarsened if the
block level is already at the minimum level or it has a neighbor block that is and remains finer.

By default the AMR criteria are applied in the whole simulation domain. This can be limited to a certain area
by adding +REGIONNAME and -REGIONNAME modifiers to the end of the TypeCriteria string. The unique RE-
GIONNAME names have to be defined in the #REGION command(s), where the definition of the region is given (for
example a sphere, or a box). See the #REGION command for a description of how to combine multiple regions.

TypeCriteria can be chosen from the following list:

’dx’ - refinment based on (max) cell size in a block
’level’ - refinment based on the grid level of a block
’gradT’ - gradient of temperature
’gradP’ - gradient of pressure
’gradlogrho’ - gradient of log(rho)
’gradlogP’ - gradient of log(P)

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 117

’gradE’ - gradient of electric field magnitude
’curlV’,’curlU’ - magnitude of curl of velocity
’curlB’ - magnitude of current density
’J2’ - square of current density
’currentsheet’ - current sheet (radial B changes sign)
’divU’, ’divV’ - divergence of velocity
’user’ - criteria defined in the user module

For TypeRefine=”transient TypeTransient” there are the following possibiities:

’transient P_dot’ - relative change of pressure (dP/dt)/P
’transient T_dot’ - relative change of temperature (dT/dt)/T
’transient Rho_dot’ - relative change of density (drho/dt)/rho
’transient RhoU_dot’ - relative change of momentum (d|rhoU|/dt)/|rhoU|
’transient B_dot’ - relative change of magnetic field (d|B|/dt)/|B|
’transient meanUB’ - max[(d|rhoU|/dt)/|rhoU|] * max[(d|B|/dt)/|B|]
’transient Rho_2nd_1’ - (|d2Rho/dx2| + |d2Rho/dy2| + |d2Rho/dz2|)/rho
’transient Rho_2nd_2’ - (|d2Rho/dx2 + d2Rho/dy2 + d2Rho/dz2|)/rho

For TypeRefine=”error StateVarName” the criteria is a numerical error estimate for the state variable StateVarName.
The error estimation is based on the second and first derivatives:

dˆ2 U

dxˆ2

E = --
1 dU SmallError

--- ------ + ---------- *U + Epsilon
DX dx DXˆ2

The SmallError parameter gives a relative error with respect to the mean value of the state variable. This parameter is
read as the last parameter of the command if there are any ”error” type criteria.

A useful tool to see the values of the various criteria is to plot the ’crit1’..’crit9’ plot variables with the #SAVEPLOT
command just before the AMR(s).

The default setting is nCriteria = 0. This can be used to refine or coarsen all the blocks limited by the minimum
and maximum levels only (see commands #AMRLEVELS and #AMRRESOLUTION).

3.8.14 Scheme parameters
#UPDATE command

#UPDATE
slow TypeUpdate (orig/slow/fast)

The TypeUpdate parameter determines which implementation of the update is used. The value ”orig” is the original
implementation that works on CPU only. The value ”slow” is the original implementation but parameters are forced
to match the fast implementation for sake of debugging. Works on CPU only. The value ”fast” is the implementation
for the GPU, but it can also be run on the CPU.

The default value is ”orig” if the code is compiled for CPU, and ”fast” when compiled for the GPU.

#UPDATEVAR command

#UPDATEVAR
rho mx my StringVarUpdate

118 CHAPTER 3. INPUT PARAMETERS

#UPDATEVAR
all StringVarUpdate

Update only a subset of the state variables. The variables should be listed with a single space separator in the
StringVarUpdate. If StringVarUpdate is set to ’all’ then all the variables are updated.

If density is updated but some components of the momentum are not, then the velocity is preserved (not the
momentum). In the first example above, the Z component of the velocity is fixed. In the current implementation this
only works with classical momentum (not with semi-relativistic momentum, see #BORIS command) and only for the
first fluid.

The default is to update all the variables.

#SCHEME command

#SCHEME
5 nOrder (1, 2 or 5)
Rusanov TypeFlux
1.2 LimiterBeta ! Only read if TypeLimiter is NOT ’minmod’

The nOrder parameter determines the spatial and temporal accuracy of the scheme. The spatially first order scheme
uses a one-stage time integration. The spatially second order MUSCL scheme either uses an explicit two-stage Runge-
Kutta or an implicit three-level BDF2 time discretization. The spatially 5th order schemes uses the 3rd order Runge-
Kutta scheme.

NOTE 1: The 5th order scheme requires 3 ghost cells and at least 6x6x6 grid blocks (to be set with Config.pl -g=...
-ng=...). The 1st and 2nd order schemes work with 2 ghost cells and can have 4x4x4 blocks.

NOTE 2: the time discretization scheme can be modified with the #TIMESTEPPING, #RUNGEKUTTA or #RK
commands after the #SCHEME command.

Possible values for TypeFlux:

’Rusanov’ - Rusanov or Lax-Friedrichs flux
’Linde’ - Linde’s HLLEL flux
’Sokolov’ - Sokolov’s Local Artificial Wind flux
’LFDW’ - Lax-Friedrichs + Dominant-Wave (Andrea Mignone)
’HLLDW’ - HLLE + Dominant-Wave (Andrea Mignone)
’HLLD’ - Miyoshi and Kusano’s HLLD flux
’Roe’ - Roe’s approximate Riemann flux (new)
’RoeOld’ - Roe’s approximate Riemann flux (old)
’Godunov’ - Godunov flux with exact Riemann solver
’Simple’ - Physical fluxes are applied without any Riemann solver.

The Rusanov, Linde, Sokolov, LFDW and HLLDW schemes are general for any equation set. The Rusanov scheme
is the most diffusive (and robust), the HLLDW scheme is the least diffusive. The Godunov flux is only implemented
for (multi-material) hydrodynamics. The Roe and HLLD schemes are implemented for ideal MHD only (single fluid,
non-relativistic, no Hall term). The new and old Roe schemes differ in some details of the algorithm, the new Roe
scheme is somewhat more robust in magnetospheric applications. The Simple solver is for testing purposes only at
this point.

No limiter is used by the 1st order scheme. The second order TVD scheme uses a TVD limiter everywhere.
The 5th order schemes has its own 5th order accurate limiter (see #SCHEME5 command). The TypeLimiter is still
used inside the region specified by the #LOWORDERREGION command and where the stencil is not large enough
for the high order scheme but sufficient for the second order scheme, which happens near face boundaries (see the
#BOXBOUNDARY and #INNERBOUNDARY command). Possible values for TypeLimiter:

’minmod’ - minmod limiter is the most robust and diffusive limiter
’mc’ - monotonized central limiter with a beta parameter

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 119

’mc3’ - Koren’s third order limiter with a beta parameter
’beta’ - beta limiter is less robust than the mc limiter for

the same beta value

Possible values for LimiterBeta (for limiters othen than minmod) are between 1.0 and 2.0:

LimiterBeta = 1.0 is the same as the minmod limiter
LimiterBeta = 1.5 is a typical value for the mc/mc3 limiters
LimiterBeta = 1.2 is the recommended value for the beta limiter
LimiterBeta = 2.0 for the beta limiter is the same as the superbee limiter

The default is the second order Rusanov scheme with the minmod limiter.

#LOWORDERREGION command

#LOWORDERREGION
+nearbody +faraway StringLowOrderRegion

This command is only useful if the nOrder is larger than 2 in the #SCHEME command. In this case the StringLowOrder-
Region string can specify a region where the low (second) order scheme is used. The regions must be described with
the #REGION command. A linear combination of a low order and high order face value is used in the tapering region.

The default is to apply the high order scheme everywhere.

#ADAPTIVELOWORDER command

#ADAPTIVELOWORDER
T UseAdaptiveLowOrder
2 nLowOrder
2.0 PCritLow
1.5 PCritHigh
2.0 VelCrit

The role of this command is similar to #LOWORDERREGION. #LOWORDERREGION selects the faces use 1st/2nd
order face values based on the geometry, while this comamd selectes low order faces based on local physical condi-
tions, which are total pressure jump and normal velocity difference in the current implementation. The low order value
could be 1st or 2nd, which is set by nLowOrder.

For each face, its 6 neighbor cells (3 cells on each side) are used as criteria. Among these 6 cells, let’s denote the
ratio between maximum and minimum pressure as pRatio, and the difference between the lagest and smallest march
number as dVel. When dVel is smaller than VelCrit, then the high order schemes are used. When dVel is larger than
VelCrit, further check the value of pRatio. If pRatio is larger/smaller that pCritLow/pCritHigh, then a low/high order
face value will be used, otherwise, use a linear combination of the low and high order value.

#SCHEME5 command

#SCHEME5
T UseFDFaceFlux
MP5 TyperLimiter5
T UseHighResChange
T UseHighOrderAMR
T DoCorrectFace

UseFDFaceFlux is meaningful only when nOrder is 5 (see #SCHEME). If it is true, a finite difference space discretiza-
tion, which is 5th order accurate for nonlinear equations, is used. Otherwise, the finite volume based discretization,
which is 2nd order accurate except for 1D linear equations, is applied.

120 CHAPTER 3. INPUT PARAMETERS

TypeLimiter5 can be MP5 or CWENO, which is used to limit 5th order space interpolation. The MP5 scheme is
recommended.

If UseHighResChange is true the ghost cells are filled in with 5th order accurate values at the grid resolution
changes so the scheme becomes 5th order accurate even at the resolution changes. If it is set to false, we switch to the
second order prolongation algorithm (see #PROLONGATION) and also switch on the DoConserveFlux parameter of
the #CONSERVEFLUX command.

If UseHighOrderAMR is true, 5th order interpolation is used for grid refinement and coarsening, so the scheme is
5th order accurate even with dynamic AMR. If false, the second order refinement and coarsening algorithms are used.

DoCorrectFace is true by default when 5th order FD scheme is used. The face values are corrected so that the 1st
order derivatives df/dx are 5th order accurate when DoCorrectFace is true.

NOTE 1: This command has no effect unless nOrder is set to 5 in the #SCHEME command.
NOTE 2: this command has to be used after the #SCHEME command, because the #SCHEME command sets the

default values.
NOTE 3: The DoConserveFlux parameter of the #CONSERVEFLUX can be overwritten with the #CONSERVE-

FLUX command AFTER the #SCHEME5 command.
The default values are shown above (assuming nOrder=5 is set in #SCHEME).

#CONSERVEFLUX command

#CONSERVEFLUX
T DoConserveFlux

Correct face flux near resolution change to keep conservation.
The default is true in general. The only exception is when the 5th order finite difference scheme is used with

UseFDFaceFlux set to true (see #SCHEME5). The default may be overwritten with this command after the #SCHEME
and #SCHEME5 commands.

#NONCONSERVATIVE command

#NONCONSERVATIVE
T UseNonConservative

If UseNonConservative is false, the total energy density equation is solved everywhere, and the pressure is derived
from the total energy density. If UseNonConservative is true, then the pressure equation is solved, and the total
energy density is calculated from the pressure and the kinetic and magnetic energy densities either everywhere (if
nConservCrit=0), or in the regions defined in the #CONSERVATIVECRITERIA command. For further control of
neutral fluids see the #NEUTRALFLUID command.

The default is using the conservative equations.

#CONSERVATIVECRITERIA command

#CONSERVATIVECRITERIA
3 nConservCrit
r TypeConservCrit
6. rConserv ! read if TypeConservCrit is ’r’
parabola TypeConservCrit
6. xParabolaConserv ! read if TypeConservCrit is ’parabola’
36. yParabolaConserv ! read if TypeConservCrit is ’parabola’
p TypeConservCrit
0.05 pCoeffConserv ! read if TypeConservCrit is ’p’
GradP TypeConservCrit
0.1 GradPCoeffConserv ! read if TypeConservCrit is ’GradP’

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 121

Select the parts of the grid where the conservative vs. non-conservative schemes are applied. The number of criteria
is arbitrary, although there is no point applying the same criterion more than once.

If no criteria is used, the whole domain will use conservative energy density or non-conservative pressure equations
depending on UseNonConservative set in command #NONCONSERVATIVE.

The physics based conservative criteria (’p’ and ’GradP’) select cells which use the non-conservative scheme if
ALL of them are true:

’p’ - the pressure is smaller than fraction pCoeffConserv of the energy
’GradP’ - the relative gradient of pressure is less than GradPCoeffConserv

The geometry based criteria are applied after the physics based criteria (if any) and they select the non-conservative
scheme if ANY of them is true:

’r’ - radial distance of the cell is less than rConserv
’parabola’ - x less than xParabolaConserv - (y**2+z**2)/yParabolaConserv

The default is to have no conservative criteria: nConservCrit = 0.

#UPDATECHECK command

#UPDATECHECK
T UseUpdateCheck
40. RhoMinPercent
400. RhoMaxPercent
40. pMinPercent
400. pMaxPercent

Note that the ”update-check” algorithm controlled by this command does not work together with high order Runge-
Kutta schemes (see the #RK command) because the RK method combines the intermediate stages for the final update.
Use the time step control method (see #TIMESTEPCONTROL and related commands) in combination with RK time
stepping. In general, for time accurate simulations the time step control method has more flexibility and it is likely to
be more effective and efficient than this update-check method.

If UseUpdateCheck is true, the local or global time step will be adjusted so that the density and pressure does not
decrease or increase by more than the given percentages in a single timestep. For example with the default settings,
if density is 1.0 initially and it would change below 0.6 or above 5.0, the (local) time step will be reduced so that the
final density remains inside the prescribed bounds.

Default is UseUpdateCheck false. For Runge-Kutta schemes UseUpdateCheck is forced to be false.

#CHECKTIMESTEP command

#CHECKTIMESTEP
T DoCheckTimeStep
2 DnCheckTimeStep
1e-6 TimeStepMin

This command is only effective in time accurate mode.
If DoCheckTimeStep is true, then check if average time step is smaller than TimeStepMin every nCheckTimeStep

time steps. If it is, save the output files (but not restart) and stop the code.
Default is DoCheckTimeStep false.

122 CHAPTER 3. INPUT PARAMETERS

#CONTROLTIMESTEP command

#CONTROLTIMESTEP
T UseTimeStepControl

#TIMESTEPCONTROL
T UseTimeStepControl

Setting UseTimeStepControl=T switches on the new time step control scheme that controls the time step based on the
relative change in selected set of variables. The variables can be selected with the #CONTROLVAR command. The
various thresholds in the relative increase and decrease of these variables can be set by the #CONTROLINCREASE
and #CONTROLDECREASE commands. The #CONTROLFACTOR command determines how much the time step
changes when the various thresholds are reached.

Currently this scheme only works in time accurate mode.
The default is UseTimeStepControl false.

#CONTROLINIT command

#CONTROLINIT
0.01 TimeStepControlInit

Set the initial reduction factor applied to the time step or Cfl number. The factor should be positive and it should
typically not more than 1.

The default value is 1, i.e. there is no initial reduction applied.

#CONTROLVAR command

#CONTROLVAR
rho p NameVarControl

The NameVarControl string contains the list of variables that are monitored to control the time step. The variable
names, separated by spaces, should be chosen from the NameVar V(1:nVar) array in the equation module. The names
are not case sensitive. Typically only the positive variables, like density and pressure, should be monitored.

Note that this command is only effective if the time step control is switched on by th #CONTROLTIMESTEP
command.

The default is the control density and pressure as shown by the example.

#CONTROLDECREASE command

#CONTROLDECREASE
0.3 RejectStepLevel
0.6 ReduceStepLevel
0.8 IncreaseStepLevel

This command sets thresholds for the relative decrease in the control variables in the time step control scheme. The
relative decrease is defined as D = min(VarNew/VarOld) where the minimum is taken over all cells in the computational
domain and all the control variables.

If D is below the RejectStepLevel threshold, the time step is rejected, and it will be redone with a smaller time
step/CFL number.

If D is above RejectStepLevel but below the ReduceStepLevel then the time step is accepted, but the next time
step/CFL number will be reduced.

If D is above RejectStepLevel but below IncreaseStepLevel, the time step is accepted and there is no change in the
time step/CFL number.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 123

If is above the IncreaseStepLevel threshold, then the time step/CFL number is increased, but it will never exceed
the original value.

This command is only effective if the time step control is switched on with the #CONTROLTIMESTEP command.
The control variables are selected by the #CONTROLVAR command, the factors that change the time step or the CFL
number are set by the #CONTROLFACTOR command.

Default values are shown.

#CONTROLINCREASE command

#CONTROLINCREASE
3.0 RejectStepLevel
1.5 ReduceStepLevel
1.2 IncreaseStepLevel

This command sets thresholds for the relative increase in the control variables in the time step control scheme. The
relative increase is defined as I = max(VarNew/VarOld) where the maximum is taken over all cells in the computational
domain and all the control variables.

If I is above the RejectStepLevel threshold, the time step is rejected, and it will be redone with a smaller time
step/CFL number.

If I is below RejectStepLevel but above the ReduceStepLevel then the time step is accepted, but the next time
step/CFL number will be reduced.

If I is below ReduceStepLevel but above IncreaseStepLevel, the time step is accepted and there is no change in the
time step/CFL number.

If I is below the IncreaseStepLevel threshold, then the time step/CFL number is increased, but it will never exceed
the original value.

This command is only effective if the time step control is switched on with the #CONTROLTIMESTEP command.
The control variables are selected by the #CONTROLVAR command, and the factors that change the time step or the
CFL number are set by the #CONTROLFACTOR command.

Default values are shown.

#CONTROLFACTOR command

#CONTROLFACTOR
0.5 RejectStepFactor
0.95 ReduceStepFactor
1.05 IncreaseStepFactor

This command sets how much the time step/CFL number is changed by the time step control scheme.
If the update is rejected then the next time step/CFL factor is multiplied by RejectStepFactor.
If the update is accepted but the time step needs to be reduced, then the next time step/CFL factor is multiplied by

ReduceStepFactor.
If the update is accepted and the relative changes in the control variables are within the range determined by the

IncreaseStepLevel parameters of the #CONTROLDECREASE and #CONTROLINCREASE commands, then the time
step/CFL number is multiplied by IncreaseStepFactor, but the original values cannot be exceeded.

This command is only effective if the time step control is switched on with the #CONTROLTIMESTEP command.
The control variables are selected by the #CONTROLVAR command.

Default values are shown.

#ENFORCECFL command

#ENFORCECFL
T DoEnforceCfl

124 CHAPTER 3. INPUT PARAMETERS

Ensures that the local temperature maximum which can be produced by the semi-implicit heat conduction solver, does
not break the CFL condition

#MULTISPECIES command

#MULTISPECIES
T DoReplaceDensity
1.0 SpeciesPercentCheck

This command is only useful for multispecies equations. If the DoReplaceDensity is true, the total density is replaced
with the sum of the species densities. The SpeciesPercentCheck parameter determines if a certain species density
should or should not be checked for large changes. If SpeciesPercentCheck is 0, all species are checked, if it is 1, then
only species with densities reaching or exceeding 1 per cent are checked for large changes (see the #UPDATECHECK
command).

Default values are shown.

#NEUTRALFLUID command

#NEUTRALFLUID
F DoConserveNeutrals
Linde TypeFluxNeutral (default, Rusanov or Linde)

If DoConserveNeutrals is false, the pressure equation is used for neutrals even when the energy equation is used for
the ions. If DoConserveNeutrals is true, the neutrals do the same as ions. The neutral fluid uses the flux function set
by TypeFluxNeutral. The default is to use the same as the ion fluid if possible. Currently only the Rusanov and Linde
(HLLE) schemes are available for the neutrals. If the ion fluid uses any other flux function, the neutrals will use the
Linde scheme.

Default values are DoConserveNeutrals=T and TypeFluxNeutral=default.

#MULTIION command

#MULTIION
0.0001 LowDensityRatio
1e-10 LowPressureRatio
T DoRestrictMultiIon
3.0 MachNumberMultiIon (read if DoRestrictMultiIon)
30.0 ParabolaWidthMultiIon (read if DoRestrictMultiIon)

This command is useful for multiion simulations. Since the numerical schemes cannot handle zero densities or temper-
atures, it is necessary to have all the ions present in the whole computational domain. The parameters of this command
determine how the code behaves in regions where one of the ions is dominant.

The LowDensityRatio parameter determines the relative density of the minor ion fluids in regions where essentially
only one ion fluid is present.

The LowPressureRatio parameter is used to keep the pressures of the minor fluids above a fraction of the total
pressure.

If DoRestrictMultiIon is true, the first ion fluid is set to be dominant in the region determined by the MachNum-
berMultiIon and ParabolaWidthMultiIon parameters. The current parametrization tries to find the region occupied by
the solar wind outside the bow shock. The region is identified as the velocity being negative and the hydrodynamic
Mach number in the X direction is being larger than MachNumberMultiIon and the point being outside the paraboloid
determined by the y2 + z2 + x ∗ ParabolaWidthMultiIon = 0 equation.

The defaults are LowDensityRatio=0.0001, LowPressureRatio=1e-10, and DoRestrictMultiIon=false.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 125

#MULTIIONSTATE command

#MULTIIONSTATE
T UseSingleIonVelocity
F UseSingleIonTemperature

This command allows to enforce uniform ion velocities and/or temperatures in multi-ion simulations. When both
logicals are true, the multi-ion simulation should become equivalient with a singlefluid multi-species simulation. This
is useful for testing.

When UseSingleIonVelocity is true, the ion velocities are set to the average fluid velocity u =
∑

s(ρ su s)/
∑

sρ s
as if there was an infinitely strong friction force between the ion fluids.

When UseSingleIonTemperature is true, the ion temperatures are set to the average temperature k BT =
∑

sp s/
∑

s(ρ s/M s)
as if there was an infinitely fast energy exchange between the ion fluids.

Default values are false for both parameters.

#COLLISION command

#COLLISION
-1.0 CollisionCoefDim
1.0e3 TauCutOffDim [s]
100.0 uCutOffDim [km/s] read if TauCutOffDim positive
2 nPowerCutOff read if TauCutOffDim positive

This command is only useful for multiion simulations. It determines the parameters for physical collisions and artificial
friction.

If the CollisionCoefDim parameter is negative the ion-ion collisions are neglected. This is typically a very good
approximation in the low density plasma of space physics. The collisions may be important in the ionosphere of
unmagnetized planets. For positive value the collision rate is taken to be CollisionCoefDim∗n/T 1.5 where T is the
temperature measured in Kelvin, n is the number density measured in /cm−3 and the resulting rate is in units of 1/s.
Note that this feature is implemented but it has not been tested yet.

The TauCutOffDim parameter determines if the relative velocity between ion fluids should be limited and at what
rate. If TauCutOffDim is positive, it gives the time rate of the friction. If the TauCutOffDim parameter is negative
the relative velocity of the ion fluids (especially parallel to the magnetic field) can become very large. In reality the
streaming instability limits the relative speed. Instead of trying to model the streaming instability directly, in the
current implementation we apply a simple friction term.

The uCutOffDim determines the speed difference (in input units, typically km/s), at which the friction term be-
comes large. Setting uCutoffDim = -1.0 switches to a physics based cut-off velocity which is defined as B/sqrt[rho1*rho2/(rho1+rho2)]
where B is the magnetic field magnitude, and rho1 and rho2 are the densities of the two ion fluids in normalized units.
Setting uCutoffDim = -2.0 applies a cut-off velocity based on the total Alfven speed B/sqrt(rho1+rho2).

The nPowerCutOff is the exponent applied to the square of the velocity difference. The friction force is applied
between all pairs of ion fluids, and it is

(1/TauCutOffDim)min(ρ i, ρ j)(u j − u i)[(u i− u j)2/uCutOffDim2]nPowerCutOff .
where i and j are the indexes of two different ion fluids and u is the velocity vector. Note that the friction force

is proportional to the smaller of the two densities so that the acceleration of the minor ion fluid is independent of the
density of the major ion fluid.

The default values are CollisionCoefDim=-1 and TauCutOffDim=-1, ie. neither collision, nor friction are applied.

#MESSAGEPASS command

#MESSAGEPASS
all TypeMessagePass

Possible values for TypeMessagePass:

126 CHAPTER 3. INPUT PARAMETERS

’all’ - fill in all ghost cells (corners, edges and faces)
’opt’ - fill in face ghost cells only

The default value is ’all’, because there are many schemes that require the ghost cells at the edges and corners (viscos-
ity, resistivity, Hall MHD, radiative diffusion, accurate resolution change algorithm, etc.). These will automatically
change to the ’all’ option even if the user sets ”opt”, which is only recommended for advanced users.

#OPTIMIZEMPI command

#OPTIMIZEMPI
F UseOptimizeMpi

If UseOptimizeMpi is true, then the two explicit MPI barriers are switched off, which may help with MPI performance.
This feature is not fully tested. The default is false.

#RESOLUTIONCHANGE command

#RESOLUTIONCHANGE
F UseAccurateResChange
T UseTvdResChange
2.0 BetaLimiterResChange
2 nFaceLimiterResChange

If UseAccurateResChange is true, then a second order accurate, upwind and oscillation free scheme is used at the
resolution changes. It requires message passing edge ghost cells (this is switched on automatically) which may effect
the performance slightly.

If UseTvdResChange is true, then an almost second order and partially downwinded TVD limited scheme is
used at the resolution changes. This scheme does not require message passing of the edge ghost cells. Only one of
UseAccurateResChange and UseTvdResChange can be true.

If BetaLimiterResChange is set to a value smaller than the BetaLimiter parameter in the #SCHEME command,
then the limiter will use this BetaLimiterResChange parameter at and near grid resolution changes. The smallest value
is 1.0 that corresponds to the minmod limiter, the maximum value is 2.0 that means that the same limiter is applied at
the resolution change as anywhere else. Recommended values are 1.0 to 1.2 combined with BetaLimiter=1.5 in the
#SCHEME command.

The nFaceLimiterResChange determines how many faces around the resolution change itself are affected. If
nFaceLimiterResChange is 0, the limiter using BetaLimiterResChange is applied at the face at the resolution change
itself. If nFaceLimiterResChange is 1 or 2, the limiter is applied at 3 or 5 faces altogether. The recommended value is
2.

Default values are shown, ie. the TVD reschange algorithm is used, and the limiter applied at the resolution
changes is the same as everywhere else, because BetaLimiterResChange is set to 2.

#RESCHANGE command

#RESCHANGE
T UseAccurateResChange

This command is kept for backwards compatibility. See description at the #RESOLUTIONCHANGE command.

#TVDRESCHANGE command

#TVDRESCHANGE
T UseTvdResChange

This command is kept for backwards compatibility. See description at the #RESOLUTIONCHANGE command.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 127

#PROLONGATION command

#PROLONGATION
2 nOrderProlong (1 or 2)

The nOrderProlong parameter determines if the fine ghost cells are filled in with first order or second order accurate
values at the resolution change. The first order value is simply a copy of the coarse cell that covers the fine ghost cell.
The second order value is obtained from linear interpolation of coarse cells covering and surrounding the fine ghost
cell. This command sets the ”UseAccurateResChange” and ”UseTvdResChange” parameters to false (see #RESO-
LUTIONCHANGE command). Since the subcylcing algorithm (see #SUBCYCLING) is not quite compatible with
the ”accurate res. change” and ”TVD res. change” algorithms, this command provides an alternative approach that is
compatible.

Note that the 5th order scheme (see #SCHEME command) uses a 5th order accurate prolongation procedure unless
the ”UseHighResChange” parameter is set to false in the #SCHEME5 command.

The default is using 1st order prolongation for the first order scheme (nOrder=1 in the #SCHEME command) the
”TVD reschange” algorithm for the 2nd order scheme, and the 5th order prolongation for the 5th order scheme.

#LIMITER command

#LIMITER
F UseLogRhoLimiter
F UseLogPLimiter
T UseRhoRatioLimiter
Xe Be Pl NameVarLimitRatio (read if UseRhoRatioLimiter)

The spatially second order scheme uses a limited reconstruction to obtain face values from the cell center values.
The order of the scheme and the type of the limiter can be set in the #SCHEME command. This command provides
additional options to the limiting procedure.

If UseLogRhoLimiter is true, the logarithm of the density is limited instead of the density itself. This can reduce
numerical diffusion in regions where the density changes exponentially with distance (e.g. in the solar corona).

If UseLogPLimiter is true, the logarithm of pressure is limited instead of the pressure itself.
If UseRhoRatioLimiter is true, then parameter NameVarLimitRatio is read and the variables listed in NameVar-

LimitRatio (the variable names are defined in ModEquation) are divided by the total density before the limiter is
applied and then multiplied back by the density at the face after the limiting is completed. This modification is useful
for the high energy density simulations of the CRASH project for the level set functions or for the internal energy
associated with ionization.

Default values are false for all variables, which results in the limited reconstruction procedure directly applied to
the original primitive variables (velocity and pressure).

#LIMITMOMENTUM command

#LIMITMOMENTUM
F DoLimitMomentum

If DoLimitMomentum is set to true then the limiter of the 2nd order scheme is applied to the momentum, if it is set to
false, the limiter is applied to the velocity. This command should be used in the first session only.

The default value is false except when the Boris scheme is used for single ion fluid (see #BORIS command) and
either nOrder is 1 (see #SCHEME command) or UseTvdResChange is true or UseAccurateResChange is true (see
#RESCHANGE, #RESOLUTIONCHANGE and #PROLONGATION commands).

128 CHAPTER 3. INPUT PARAMETERS

#LIMITPTOTAL command

#LIMITPTOTAL
T DoLimitPtotal

If DoLimitPtotal is true and nOrder is larger than 1 (see #SCHEME command) and a single ion fluid is solved for then
apply the limiter to the total pressure that is the sum of ion, electron and Alfven wave turbulence pressures. Otherwise
the limiter is applied to the individual pressures.

Default is DoLimitPtotal false.

#CLIMIT command

#CLIMIT
T UseClimit (rest of parameters are read if true)
3000.0 ClimitDim [km/s]
6.0 rClimit

If UseClimit is true, the wave speeds used in the numerical diffusive fluxes are limited by the value of ClimitDim
(in I/O units, typically km/s) within the sphere of radius rClimit (typically in units of planetery radii). This scheme
cannot be used with a fully explicit time integration, because it will not be stable! One should use the fully or part
implicit scheme (see the #IMPLICIT command). In contrast with the Boris correction (see the #BORIS command),
this scheme is fully consistent with the governing equations in time accurate mode as well. It can be combined with
the Roe scheme too unlike the Boris correction. The limiting scheme cannot be combined with the HLLD scheme
(neither can be the Boris correction at this point).

A reasonable set of values are shown above. Much smaller velocity limit will result in slow convergence for the
implicit solver. The radial limit is not very crucial, but it should be set large enough to cover the whole region where
the wave speed may exceed it and the reduced diffusion is important.

Default is UseClimit false.

#BORIS command

#BORIS
T UseBorisCorrection
1.0 BorisClightFactor !Only if UseBorisCorrection is true

If UseBorisCorrection is set to true and there is only a single ion fluid, then the semi-relativistic MHD equations are
solved. If there are multiple ion fluids, the code automatically switches to the ”simple Boris correction” described at
the #SIMPLEBORIS command.

The semi-relativistic MHD equations limit the Alfven speed to the speed of light. The speed of light can be artifi-
cially reduced by the BorisClightFactor. Set BorisClightFactor=1.0 for true semi-relativistic MHD. BorisClightFactor
less than 1 can be used to allow larger explicit time steps and to reduce the numerical diffusion. Typical values are
0.01 to 0.02, which set the speed of light to 3,000km/s and 6,000km/s, respectively. Note that semi-relativistic MHD
gives the same steady state solution as normal MHD analytically, but there can be differences due to discretization
errors, in particular the Boris correction reduces the numerical diffusion. See Toth et al. 2011 (Journal of Geophysical
Research, 116, A07211, doi:10.1029/2010JA016370) for an in-depth discussion.

See also the #BORISSIMPLE command as an alternative. Note that you cannot set both UseBorisCorrection and
UseBorisSimple to true.

Default is UseBorisCorrection=.false.

#BORISSIMPLE command

#BORISSIMPLE
T UseBorisSimple
0.05 BorisClightFactor !Only if UseBorisSimple is true

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 129

Use simplified semi-relativistic MHD. For single fluid MHD this means that the time derivative of the momentum
density is multiplied with a factor (1 + vA2/c2), which reduces the change of velocity. For the multi-ion MHD the
JxB - grad(Pe) forces acting on the fluids are reduced by the same factor (which has a similar effect).

The speed of light can be reduced by the BorisClightFactor. This scheme is only useful with BorisClightFactor less
than 1. The single fluid case should give the same steady state as normal MHD, but there can be a difference due to
discretization errors. The multi-ion MHD case will not even give the same steady state analytically as the unmodified
multi-ion MHD. You can use either Boris or BorisSimple but not both. For multi-ion MHD only the simple Boris
scheme is available.

Default is UseBorisSimple=.false.

#BORISREGION command

#BORISREGION
+nearbody NameBorisRegion

This command can be used to limit the effect of the (simple) Boris correction (see #BORIS and #SIMPLEBORIS) to
a region defined by one or more #REGION commands. Outside this region the semi-relativistic equations are solved
with the true speed of light, while inside the Boris region the speed of light is reduced. It is probably a good idea to
use tapering (see the #REGION command) so that the speed of light changes gradually at the edges of the region.

The default is to use the reduced speed of light everywhere.

#B0 command

#B0
F UseB0

If UseB0 is true, the magnetic field is split into an analytic B0 and a numerical B1 field. The B0 field may be a
(rotating) dipole of a planet, or the potentialf field solution for the corona. B1 is not small relative to B0 in general.
The default value depends on the application.

#CURLB0 command

#CURLB0
T UseCurlB0
2.5 rCurrentFreeB0 (read if UseCurlB0 is true)
T UseB0MomentumFlux (read if UseCurlB0 is true)

If UseCurlB0 is true, then the B0 field has non-zero curl. The B0 field of planets has zero curl, but the potential field
source surface model (PFSS) for the corona has a finite curl beyond the source surface, where the field is forced to
become radial.

The rCurrentFreeB0 parameter is set to the radius within which the B0 field has no curl (i.e. it is current free).
If UseB0MomentumFlux is true, the contribution from B0 field to momentum source is calculated as div(B0B0)−

gradB02/2 − B0divB0 otherwise as curlB0 × B0. Although mathematically identical, these expressions are nu-
merically different.

If this command is not used, then the defaults are the following. The default is UseCurlB0 false in general, but it
is set to true if the radius of the B0 grid generated by #HARMONICSGRID command or by FDIPS is less than the
radius of the solar corona domain. In this case rCurrentFreeB0 is set to the radius of the B0 grid. If the local B0 lookup
table is used, it is assumed to be non-potential, so the default becomes UseCurlB0 true and rCurrentFreeB0=0.

The default for UseB0MomentumFlux is false.

130 CHAPTER 3. INPUT PARAMETERS

#LIGHTSPEED command

#LIGHTSPEED
10.0 cLightDim

Set speed of light used in the Maxwell equations. Reducing the speed of light artificially will allow larger explicit time
steps. The speed of light should be larger than the typical wave speeds present in the problem.

Default is the true speed of light.

#FORCEFREEB0 command

#FORCEFREEB0
T UseForceFreeB0
1.5 rMaxForceFreeB0 (read if UseForceFreeB0 is true)

If UseForceFreeB0 is true then define the B0 field to be force-free but with non-zero J0=curl B0 below radius rMax-
ForceFreeB0. The force-free property means that J0 x B0 = 0 in the momentum and energy equations.

The default is UseForceFreeB0 false.

#HYPERBOLICDIVE command

#HYPERBOLICDIVE
0.1 HypEDecay

This command sets the decay rate for the hyperbolic/parabolic constraint for the div E = charge density condition
when we solve for the electric field. The hyperbolic cleaning is always applied with the speed of light. In addition the
scalar HypE decays as HypE=HypE*(1-HypEDecay) if HypEDecay is set to a positive value. If HypEDecay is less
than zero, no parabolic decay is applied.

Default is HypEDecay=0.1.

#DIVB command

#DIVB
T UseDivbSource
F UseDivbDiffusion
F UseProjection
F UseConstrainB

Default values are shown above. If UseProjection is true, all others should be false. If UseConstrainB is true, all others
should be false. At least one of the options should be true unless the hyperbolic cleaning is used. The hyperbolic
cleaning can be combined with UseDivbSource only.

#B0SOURCE command

#B0SOURCE
T UseB0Source
F UseDivFullBSource (read if UseB0Source is true)

If UseB0Source is true, add extra source terms related to the non-zero divergence and curl of B0 in the momentum
equation to cancel out numerical errors in the divergence of the Maxwell tensor.

If UseDivFullBSource is also true, use div(B1+B0) in the induction and energy equations instead of div(B1) in the
8-wave scheme.

Default values are shown.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 131

#DBTRICK command

#DBTRICK
F UseDbTrick

This ”trick” tries to maintain positivity when the conservative MHD energy equation is used by adding dB2/2 to the
energy density where dB is the change of the magnetic field relative to the previous time step. This trick is done either
at the half step of the time accurate 2-stage scheme or in the (1 or 2-stage) local time stepping scheme. In steady state
the correction is zero becasuse dB=0. For the time-accurate 2-stage scheme, the correction done at the half step is
O(dt2) because dB is proportional to the time step, so the trick is consistent and still second order accurate.

Default is true if the trick is compatible with other settings. In particular, the trick is switched off for Runge-Kutta
schemes.

#LORENTZFORCE command

#LORENTZFORCE
F UseJCrossBForce

By default the single ion MHD equations use the divergence of the Maxwell tensor to calculate the momentum fluxes
(UseJCrossBForce is false), while in the multiion equations the force acting on each fluid is calculated as (qi/qe)*(J x
B), where qi and qe are the charge densities of the ion fluid and the electrons, respectively. An alternative approach is
to use (qi/qe)*Ec, where Ec is the electric field in the comoving (moving with the ions) frame, and Ec is obtained from
the divergence of the Maxwell tensor. The advantage of the latter approach is that the equation for the total momentum
will be in conservation form, since sum(qi) = qe.

In the future, we may switch the default value of UseJCrossBForce=F for multiion MHD too. For now, it can be
set with this command.

#HYPERBOLICDIVB command

#HYPERBOLICDIVB
T UseHyperbolicDivb
400.0 SpeedHypDim
0.1 HypDecay

This command sets the parameters for hyperbolic/parabolic cleaning. The command (and the hyperbolic cleaning
method) can only be used if there is a hyperbolic scalar named Hyp in the equation module. The SpeedHypDim
parameter sets the propagation speed for div B errors in dimensional units. Do not use a speed that limits the time step
(ie. exceeds the fastest wave speed). The HypDecay parameter is for the parabolic cleaning. If HypDecay is less than
zero, no parabolic cleaning is applied. If it is positive, the scalar field is modified as Hyp=Hyp*(1-HypDecay) after
every update. This corresponds to a point implicit evaluation of a parabolic diffusion of the Hyp scalar.

Default is UseHyperbolicDivb false.

#PROJECTION command

#PROJECTION
cg TypeProjectIter:’cg’ or ’bicgstab’ for iterative scheme
rel TypeProjectStop:’rel’ or ’max’ error for stop condition
0.1 RelativeLimit
0.0 AbsoluteLimit
50 MaxMatvec (upper limit on matrix.vector multipl.)

Default values are shown above.

132 CHAPTER 3. INPUT PARAMETERS

For symmetric Laplacian matrix TypeProjectIter=’cg’ (Conjugate Gradients) should be used, as it is faster than
BiCGSTAB. In current applications the Laplacian matrix is always symmetric.

The iterative scheme stops when the stopping condition is fulfilled:

TypeProjectStop = ’rel’:
stop if ||div B|| < RelativeLimit*||div B0||

TypeProjectStop = ’max’ and RelativeLimit is positive:
stop if max(|div B|) < RelativeLimit*max(|div B0|)

TypeProjectStop = ’max’ and RelativeLimit is negative:
stop if max(|div B|) < AbsoluteLimit

where ||.|| is the second norm, and B0 is the magnetic field before projection. In words ’rel’ means that the norm
of the error should be decreased by a factor of RelativeLimit, while ’max’ means that the maximum error should be
less than either a fraction of the maximum error in div B0, or less than the constant AbsoluteLimit.

Finally the iterations stop if the number of matrix vector multiplications exceed MaxMatvec. For the CG iterative
scheme there is 1 matvec per iteration, while for BiCGSTAB there are 2/iteration.

In practice reducing the norm of the error by a factor of 10 to 100 in every iteration works well.
Projection is also used when the scheme switches to constrained transport. It is probably a good idea to allow

many iterations and require an accurate projection, because it is only done once, and the constrained transport will
carry along the remaining errors in div B. An example is

#PROJECTION
cg TypeProjIter
rel TypeProjStop
0.0001 RelativeLimit
0.0 AbsoluteLimit
500 MaxMatvec

3.8.15 Coupling paramaters
#TRACE command

#TRACE
T UseTrace (rest is read if true)
T UseAccurateTrace
0.1 DtExchangeTrace [sec]
1 DnTrace

Tracing (field-line tracing) is needed to couple the GM with the IM or RB components. It can also be used to create
plot files with open-closed field line information. There are two algorithms implemented for integrating field lines and
for tracing field lines.

By default UseTrace parameter is true if there is magnetic field in the equation module. The parameter can be set
to false to save memory allocation.

If UseAccurateTrace is false (default), the block-wise algorithm is used, which interpolates at block faces. This
algorithm is fast, but less accurate than the other algorithm. If UseAccurateTrace is true, the field lines are followed
all the way. It is more accurate but potentially slower than the other algorithm.

In the accurate tracing algorithms, when the line exits the domain that belongs to the PE, its information is sent
to the other PE where the line continues. The information is buffered for sake of efficiency and to synchronize com-
munication. The frequency of the information exchanges (in terms of CPU seconds) is given by the DtExchangeTrace
parameter. This is an optimization parameter for speed. Very small values of DtExchangeTrace result in many ex-
changes with few lines, while very large values result in infrequent exchanges thus some PE-s may become idle (no
more work to do). The optimal value is problem dependent. A typically acceptable value is DtExchangeTrace = 0.1
seconds (default).

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 133

The DnTrace parameter contains the minimum number of iterations between two tracings. The default value 1
means that every new step requires a new trace (since the magnetic field is changing). A larger value implies that the
field does not change significantly in that many time steps. The tracing is always redone if the grid changes due to an
AMR.

Default values are UseAccurateIntegral = .true. (if there is magnetic field), UseAccurateTrace = .false., DtEx-
changeTrace = 0.1 and DnTrace=1.

#TRACERADIUS command

#TRACERADIUS
2.5 rTrace
-1.0 rIonosphere

This command sets the inner boundary of field tracing. If rTrace is negative, there is no inner boundary for the tracing.
If rTrace is positive then the field/stream lines are traced to rTrace. If rIonosphere is also positive, then the magnetic
field lines are further traced along the dipole field down to rIonosphere. If rIonosphere is negative then this is not done.

For the GM component the default is rIonosphere=1 if there is a central dipole field. For other cases the default is
rIonosphere=-1. For rTrace the default is the larger of the ionosphere and body radii. If there is no ionosphere and no
body then the default is rTrace=-1.

#TRACELIMIT command

#TRACELIMIT
50 TraceLengthMax

TraceLengthMax provides the maximum length for tracing a field/stream line. Setting a small limit can avoid tracing
extremely long field lines that are not used later. The default is 200 units.

#TRACEACCURACY command

#TRACEACCURACY
5.0 AccuracyFactor

Set the accuracy of the tracing algorithm. The default accuracy is optimized for speed. Setting AccuracyFactor to
a larger value reduces the step size proportionally. Factor 5 may avoid failed tracing. Factor 20 is close to fully
converged accuracy. The higher accuracy means that more time is spent on the field line tracing.

Default is AccuracyFactor=1.

#SQUASHFACTOR command

#SQUASHFACTOR
360 nLonSquash
180 nLatSquash
20.0 AccuracyFactorSquash

Set the resolution of the spherical grid at the inner boundary on which the squash factor is calculated. Also set the
accuracy of the tracing used for the squash factor calculation.

Default values are shown above.

134 CHAPTER 3. INPUT PARAMETERS

#TRACETEST command

#TRACETEST
35 iLonTest
10 iLatTest

Set the longitude and latitude indexes of the tested trace. This is useful to test an individual trace line starting from a
spherical or cylindrical grid. The subroutine to be tested still needs to be set with the #TEST command.

Default values are 1 for both indexes.

#TRACEIE command

#TRACEIE
T DoTraceIE

DoTraceIE will activate accurate ray tracing on closed field lines for coupling with the IE module. If not set, then only
Jr is sent. If set, then Jr as well as 1/B, average rho, and average p on closed field lines are passed. This command is
required (!) for the MAGNIT conductance model in IE/RIM.

Default is DoTraceIE false.

#IECOUPLING command

#IECOUPLING
T UseIonoVelocity (rest of parameters read if true)
4.0 rCoupleUiono
10.0 TauCoupleUiono

This command sets parameters for a new experimental coupling of the velocity from IE to GM.
The rCoupleUiono paramter determines the radius within which the GM velocity is effected. The TauCoupleUiono

parameter determine how fast the GM velocity should be nudged towards the E x B drift plus corotation.
coupling occurs, but the nudging towards the velocity is done in every GM time step. When GM is not run in time

accurate mode, the orthogonal (to B) velocity is set as
uOrth’ = uOrth + (uIonoOrth - uOrth)/(TauCoupleUiono+1)
Therefore the larger TauCoupleUiono is the slower the adjustment will be. It takes approximately 2*TauCou-

pleUiono time steps to get the orthogonal velocity close to what the ionosphere would prescribe. In time accurate
mode, the nudging is based on physical time:

uOrth’ = uOrth + min(1.0, dt/TauCoupleUiono)*(uIonoOrth - uOrth)
where dt is the time step. It takes about 2*TauCoupleUiono seconds to get uOrth close to uIonoOrth. If the time

step dt exceeds TauCoupleIm, uOrth is set in a single step.
By default the coupling is switched off.

#IM command

#IM
20.0 TauCoupleIm
F DoImSatTracing

Same as command IMCOUPLING, except it only reads the first and second parameters of #IMCOUPLING.
The default value is TauCoupleIm=20.0, which corresponds to typical nudging and DoImSatTrace false.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 135

#IMCOUPLING command

#IMCOUPLING
20.0 TauCoupleIm
F DoImSatTrace
T DoCoupleImPressure
F DoCoupleImDensity
0.01 DensityCoupleFloor (read if DoCoupleImDensity is true)
T DoFixPolarRegion (rest read if true)
5.0 rFixPolarRegion
20.0 PolarNDim [amu/cc] for fluid 1
100000.0 PolarTDim [K] for fluid 1
2.0 PolarNDim [amu/cc] for fluid 2
20000.0 PolarTDim [K] for fluid 2

This command sets various parameters for the GM-IM coupling.
The TauCoupleIm parameter determines how fast the GM pressure p (and possibly density rho) should be relaxed

towards the IM pressure pIm (and density dIM). but the relaxation towards these values is done in every GM time step.
When GM is not run in time accurate mode, the pressure is set as

p’ = (p*TauCoupleIm + pIm)/(TauCoupleIm+1)

Therefore the larger TauCoupleIm is the slower the adjustment will be. It takes approximately 2*TauCoupleIm time
steps to get p close to pIm. In time accurate mode, the relaxation is based on physical time:

p’ = p + min(1.0, dt/TauCoupleIm)*(pIm - p)

where dt is the time step. It takes about 2*TauCoupleIm seconds to get p close to pIm. If the time step dt exceeds
TauCoupleIm, p’ = pIm is set in a single step. The default value is TauCoupleIm=20.0, which corresponds to typical
relaxation rate.

The DoImSatTrace logical sets whether the IM component receives the locations of the satellites in GM mapped
down along the magnetic field lines. The IM component then can produce satellite output files with IM data.

The DoCoupleImPressure logical sets whether GM pressure is driven by IM pressure. Default is true, and it should
always be true (except for testing), because pressure is the dominant variable in the IM to GM coupling.

The DoCoupleImDensity logical sets whether the GM density is relaxed towards the IM density.
The DensityCoupleFloor parameter is read if DoCoupleImDensity is true. If DensityCoupleFloor is positive,

it sets a minimum density floor for every fluid coupled between GM and IM. This avoids situations where very low
densities in the ring current model would push the BATS-R-US densities to very low values, which can cause numerical
problems. If a floor value is necessary, the recommended value is 0.01 amu/cc.

The DoFixPolarRegion logical decides if we try to fix the pressure (and density) values in the open field line region.
The pressure/density tends to diffuse numerically from the closed field line region (controlled by IM) into the polar
region that should not be affected by IM. This can cause unphysically fast outflow from the polar region. If DoFixPo-
larRegion is set to true, the pressure (and density) are relaxed toward the values given in the #POLARBOUNDARY
command in the open field line region within radius defined by rFixPolarRegion and where the flow points outward.

If DoFixPolarRegion is true then the following parameters are also read:
The rFixPolarRegion radius (given in planetary radii) sets the outer limit for relaxing the pressure (density) in

the open field line region towards the PolarNDim and PolarTDim values. For multi-fluid MHD, the PolarNDim and
PolarTDim parameters are read for each fluid.

The default is to couple the IM pressure only and no fix is applied in the polar region.

#IMCOUPLINGSMOOTH command

#IMCOUPLINGSMOOTH
10.0 dLatSmoothIm [deg]

136 CHAPTER 3. INPUT PARAMETERS

Smooth out the pressure and density nudging at the edge of the IM boundary. The nudging is ramped up linearly
within dLatSmootIm degrees along the magnetic latitude direction. Default is -1.0, which means no smoothing.

#MULTIFLUIDIM command

#MULTIFLUIDIM
F DoMultiFluidIMCoupling

If DoMultiFluidIMCoupling is true, the information exchanged between GM and IM is in multi-fluid mode: GM gives
IM four more variables (density Hp, density Op, pressure Hp, pressure Op) in addition to one-fluid MHD paramters,
and IM passes GM the same four more variables.

The default value is DoMultiFluidIMCoupling = false, MHD variables are exchanged between GM and IM.

#ANISOPRESSUREIM command

#ANISOPRESSUREIM
F DoAnisoPressureIMCoupling

If DoAnisoPressureIMCoupling is true, the information exchanged between GM and IM allows for pressure anisotropy.
This only makes sense if BATSRUS is configured with anisotropic pressure equations and the IM model allows for
non-isotropic pressure (which is all models except RCM).

The default value is DoAnisoPressureIMCoupling = false, which means that isotropy is assumed in the coupling
(even if both GM and IM allow for anisotropy).

#PSCOUPLING command

#PSCOUPLING
20.0 TauCouplePs
T DoCouplePsPressure
T DoCouplePsDensity
.1 DensityCoupleFloor

This command controls density and pressure coupling from the plasmasphere (PS) component into BATS-R-US. Tau-
CouplePs sets the rate at which MHD fluids are ”nudged” towards the PS solution in the exact fashion as #IMCOU-
PLING. DoCouplePsPressure and DoCouplePsDensity select which values are nudged. DensityCoupleFloor controls
the minimum density that results from this coupling. Setting this to a reasonable value helps prevent near-zero time
steps.

The default action is to not couple density or pressure from PS.

#PWCOUPLING command

#PWCOUPLING
F DoLimitRhoPw

If DoLimitRhoPw is true, limit the PW supplied densities by the body densities from below.
Default is false.

3.8.16 Pic coupling
#PICUNIT command

#PICUNIT
1.0 xUnitPicSi [m]
3000e3 uUnitPicSi [m/s] Speed of light for PIC

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 137

Define the length and velocity units for the PIC model. The length unit is arbitrary (can be defined to be the same as
for the MHD model, or any other convenient length). The velocity unit, however, determines the speed of light for the
PIC model, since c=1 is defined. Using the true speed of light makes the convergence slow in the implicit solver of
PIC. Therefore uUnitPicSi should be set to a velocity that is larger than the typical velocities (including the electron
thermal velocity), but not orders of magnitude larger. For typical magnetosphere applications a few 1000 km/s can
work.

Default is 1 for both parameters, which is only meaningful if the velocities are much smaller than 1 (e.g. in shock
tube test problems).

#PICGRIDUNIT command

#PICGRIDUNIT
2 nPicGrid
1.0 xUnitPicSi [m]
3000e3 uUnitPicSi [m/s] Speed of light for the first PIC region
8 ScalingFactor
6400e3 xUnitPicSi [m]
1000e3 uUnitPicSi [m/s] Speed of light for the second PIC region
16 ScalingFactor

Similar to command #PICUNIT, but this command allows setting different normalization units for different PIC grids.
ScalingFactor is used for changing the kinetic scales. See Toth et al. 2017 for more details.

If Hall MHD is used, the scaling factors in this command will not be used, and PIC boxes use the surrounding Hall
factors as the scaling factor.

The defaults are the same as described in #PICUNIT. Do not use #PICUNIT and #PICRGRIDUNIT at the same
time.

#PICGRID command

#PICGRID
2 nPicGrid

6. xMinPic
10. xMaxPic
-5. yMinPic (read for 2D or 3D only)
5. yMaxPic (read for 2D or 3D only)

-5. zMinPic (read for 3D only)
5. zMaxPic (read for 3D only)

1/32 DxPic
1/32 DyPic (read for 2D or 3D only)
1/32 DzPic (read for 3D only)
10. xMinPic
40. xMaxPic
-10. yMinPic (read for 2D or 3D only)
10. yMaxPic (read for 2D or 3D only)
-6.0 zMinPic (read for 3D only)
6.0 zMaxPic (read for 3D only)

1/8 DxPic
1/8 DyPic (read for 2D or 3D only)
1/8 DzPic (read for 3D only)

This command defines the number of PIC grids, their sizes and resolutions. All distances are given in the BATSRUS
distance units. The grid resolution of the PIC grid can be different from the grid resolution of BATSRUS. When

138 CHAPTER 3. INPUT PARAMETERS

coupling with FLEKS, the number of PIC grid cells in each direction should be a multiple of the patch sized defined
by the #PICPATCH command.

The default is to have no PIC regions at all, so this command is required for the MHD-EPIC algorithm.

#PICADAPT command

#PICADAPT
T DoAdaptPic (rest is read if true)
100 DnAdaptPic
-1. DtAdaptPic

This command controls the PIC adaptation functionality. This results in FLEKS covers a fixed region using PIC by
the parameters set up in #PICGRID. If DoAdaptPic=.true., the PIC region will be recalculated based on the frequency
(DnAdaptPic and DtAdaptPic) provided.

Default is DoAdaptPic false.

#PICPATCH command

#PICPATCH
4 PatchSize

PatchSize is the minimum patch size of the adaptive PIC grid given as the number of cells in each direction, so a patch
is a square in 2D and a cube in 3D. The PIC cells in a patch can be switched on and off together. The number of cells
in the PIC grid, which is defined by #PICGRID, should be divisible by the PatchSize.

The smallest patch size is 2, and 4 is the default value. The smaller the patch size is, the smoother the PIC boundary
will be. But the PIC code may become slower with smaller patch size. 4 or 8 are two typical values. 2 may slow down
the code significantly.

The default value is 4.

#PICPATCHEXTEND command

#PICPATCHEXTEND
5 NxExtend
5 NyExtend
10 NzExtend

This command contains the number of patches extended from the PIC region defined by #PICCRITERIA on different
directions.

Default is no extension.

#PICBALANCE command

#PICBALANCE
T DoBalancePicBlock
F DoBalanceActivePicBlock

If DoBalancePicBlock is switched on, the BATSRUS blocks that are overlapped with the PIC domains (defined by
#PICGRID) will be load balanced separatelly.

If DoBalanceActivePicBlock is true, only the BATSRUS blocks that are overlapped with the active PIC regions,
which are determined by #PICREGIONMIN and/or #PICREGIONMAX, are load balanced separatelly. If the GM-PC
coupling is slow, this option is likely speed up the coupling significantly. However, it has two known minor side
effects, which may change nightly test results but are acceptable for a production run: 1. After calling load balance
function, the PIC adaptation criteria will be re-calculated. For a simulation with physics based PIC region criteria,

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 139

running with 1 MPI or a few MPIs may produce different results, because the simulation with 1 MPI does not need
to do load balance and the pic criteria will not be re-calculated. Load balancing BATSRUS blocks frequently may
also slow down BATSRUS. 2. Inside BATS advance(), set global timestep(TimeSimulationLimit) is called, and the
timestep is limited by TimeSimulationLimit. However, if load balance blocks() is called later, the global time step
will be overwritten inside calc other vars().

The default is DoBalancePicBlock true, and DoBalanceActivePicBlock is false.

#PICREGIONMIN command

#PICREGIONMIN
+daysidefixed -nearbody

The #PICREGIONMIN command sets the regions in the PIC grids that are always active (on). The region strings are
defined by the #REGION command.

By default there is no minimal PIC region, so any part of the PIC domain can be switched off.

#PICREGIONMAX command

#PICREGIONMAX
+tailsidelarge

This command defines the maximum region the PIC can cover cover. PIC patches outside this region cannot become
active. The region strings are defined by the #REGION commands.

By default the whole domain covered by PIC grids can become active.

#PICCRITERIA command

#PICCRITERIA
4 nPicCriteria
j/b StringPicCriteria
0.1 MinCriteriaValue
999.0 MaxCriteriaValue
10.0 CriteriaB1
j/bperp StringPicCriteria
0.8 MinCriteriaValue
999.0 MaxCriteriaValue
divcurv StringPicCriteria
-0.1 MinCriteriaValue
999.0 MaxCriteriaValue
entropy StringPicCriteria
0.02 MinCriteriaValue
999.0 MaxCriteriaValue

This command defines the physical criteria for selecting the PIC region. The first input is the number of criteria.
For each criterion, there are three inputs: the name, minimum value and maximum value. The cell which satisfies
all criteria will be active. This physics based selection can be limited geometrically by the #PICREGIONMIN and
#PICREGIONMAX commands.

The available criteria are ”rho” (for testing), ”beta” (the ratio between plasma pressure and magnetic paressure),
”j/b”, ”j/bperp” (current divided by magnetic field for finding current sheets), ”divcurv” (the divergence of the curva-
ture of the magnetic field lines to distinguish X lines from flux ropes), ”speed” (bulk flow speed to exclude magne-
tosheath), and ”jy” (distinguish main current sheet in magnetotail). Criteria ”j/b” and ”j/bperp” require an extra input
parameter for B1 in the denominator to avoid dividing by 0. Default value of B1 is 1 nT.

By default the whole PIC region is active (possibly limited by #PICREGIONMAX).

140 CHAPTER 3. INPUT PARAMETERS

3.8.17 Physics parameters
#GAMMA command

#GAMMA
4/3 Gamma for fluid 1
1.4 Gamma for fluid 2
5/3 GammaElectron (if UseElectronPressure)

The adiabatic index gamma = c p/c v (ratio of the specific heats for fixed pressure and fixed volume). The gamma
values have to be given for each fluid and also for the electrons if there is a Pe variable in the equation module.

Default is 5/3 for all the gamma-s.

#PLASMA command

#PLASMA
1.0 FluidMass [amu] H+
1.0 IonCharge [e] H+
0.5 ElectronTemperatureRatio

For single fluid, single species MHD the FluidMass parameter determines the average mass of ions (and strongly
coupled neutrals) in atomic mass units (amu). The number density is n=rho/FluidMass. For a pure hydrogen plasma
FluidMass=1.0, while for a mix of 90 per cent hydrogen and 10 per cent helium FluidMass=1.4.

The IonCharge parameter gives the average ion charge in units of the proton charge. For a fully ionized hydrogen
plasma AverageIonCharge=1.0, for a fully ionized helium plasma IonCharge=2.0, while for a 10 per cent ionized
hydrogene plasma IonCharge=0.1.

For multifluid/multispcies MHD/HD the command reads the mass of all fluids/species (ions and neutrals), and
the charges of all ion fluids/species. For example for proton and double ionized helium and neutral oxygen molecule
fluids:

#PLASMA
1.0 FluidMass H+ [amu]
4.0 FluidMass He++ [amu]
32.0 FluidMass O2 [amu]
1.0 IonCharge H+ [e]
2.0 IonCharge He++ [e]
0.2 ElectronTemperatureRatio

The ElectronTemperatureRatio determines the ratio of electron and ion temperatures. The ion temperature Te =
T * ElectronTemperatureRatio where T is the ion temperature. The total pressure p = n*k*T + ne*k*Te, so T =
p/(n*k+ne*k*ElectronTemperatureRatio). If the electrons and ions are in temperature equilibrium, ElectronTemper-
atureRatio=1.0. For multi-fluid MHD the ElectronTemperatureRatio is interpreted as electron pressure ratio. The
electron pressure is taken as pE = ElectronTemperatureRatio*sum(pIon I). Note that one can also solve the electron
pressure equation if ’Pe’ is present in the equation module.

Multispecies MHD reads the mass and charge for all species in the same manner as multifluid. But the ion charge is
still assumed to be 1 in the code and the values read in will not be used so far. ElectronTemperatureRatio is interpreted
as the single fluid case.

In a real plasma all these values can vary in space and time, but in a single fluid/species MHD description using
these constants is the best one can do. In multispecies MHD the number density can be determined accurately as n =
sum(RhoSpecies V/(ProtonMass*MassSpecies V)).

The default ion/molecular masses are given in the equation module. The default ion charges are always 1. The
default electron temperature ratio is zero, i.e. the electron pressure is assumed to be negligible relative to the (total)
ion pressure, however in the solar wind boundary the electron pressure is set to equal to the first ion pressure.

This default is backwards compatible with previous versions of the code.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 141

#LOOKUPTABLE command

#LOOKUPTABLE
p(rho,e) NameTable
use param NameCommand (use, load, save, make, param)
table1.out NameFile (read this if use/load/save)
real4 TypeFile (read this unless "param")
zXe zBe nPl NameTableParam (if NameCommand has "param")
54.0 TableParam number of protons in Xenon
4.0 TableParam number of protons in Beryllium
4.0 TableParam number of elements in plastic
p(rho,e) for ionized plasma Description (read this and rest unless "load")
logrho logp pXe pBe pPl NameVar
2 nIndex
100 nIndex1
1e-6 Index1Min
1e+6 Index1Max
50 nIndex2
0.001 Index2Min
100.0 Index2Max

Lookup tables allow interpolating one or more variables from a discrete table. For sake of efficiency, lookup tables
should have uniform indexes, but non-uniform tables are also supported. Tables with up to 5 indexes are supported.
Lookup tables are in the same format as structured ”IDL” plotfiles. The file format is described at the beginning of the
source code share/Library/src/ModPlotFile.f90.

Tables are identified by the NameTable string that should be unique for the table and must agree with the name
used in the ModUser module. The NameCommand tells if we should ”load” the table from a file, ”make” the table
using some algorithm defined in the ModUser module, or make the table and then ”save” it into a file. The ”use”
option is the same as ”load” if the table file already exists, otherwise it is the same as ”save”.

If NameCommand contains ”param” and the table is not loaded from a file, then the NameTableParam variable
and the TableParam values of table parameters are read from the input file and stored into the table.

The file name and file type (”real4”, ”real8”, ”ascii”, ”log” or ”sat”) of the table are read when NameCommand
contains ”load”, ”save”, or ”use”. The TypeFile is also read for ”make”, because setting it to ”real4” implies the use of
single precision storage internally as well. This saves a factor of two in storage (both disk and memory), which may
be very significant for large lookup tables. In fact, TypeFile=real4 is the recommended setting.

The ”log” or ”sat” file type corresponds to a one dimensional lookup table where the coordinate is usually time.
The time can be given by up to 7 integer columns (year, month, day, hour, sec, min, msec). The integer time description
is converted into a double precision time (number of seconds since 01/01/1965) which is the standard representation
of time in the SWMF. These columns are identified by the space separated variable names that are just before the
”#START” string. Standard variable names indicating the date-time information are ”year” or ”yr”, ”month” or ”mo”,
”day” or ”dy”, ”min” or ”mn”, ”sec” or ”sc” and ”msec” or ”msc” in this order. Alternatively the variable name can
be ”dateN” where N = 2...7 is the number of integers describing the date and time. The actual data follows the line
containing the ”#START” string.

The rest of the parameters are read for commands ”make”, ”save” or ”use”. The NameVar string contains the
space separated list of the names of the indexes and the one or more returned value(s). If the index name starts with a
”log”, a logarithmic index is assumed (ie. the table will be uniform in the logarithm of the index value). The nIndex
parameter defines the number of indexes (dimensionality) of the table. The nIndex1 parameter defines the number of
discrete values the first lookup index, and Index1Min and Index1Max are the smallest and largest values for the first
index, respectively. For nIndex larger than 1, the nIndex2, Index2Min, Index2Max parameters define the number and
range of the second index, etc.

This command can occur multiple times. By default no lookup tables are used.

142 CHAPTER 3. INPUT PARAMETERS

#ADVECTION command

#ADVECTION
T UseAdvectionSource
Rho NameVarAdvectFirst
Rho NameVarAdvectLast

If UseAdvectionSource is true, then add a source term Var*div(u) for all variables from NameVarAdvectFirst to
NameVarAdvectLast. This could be improved to a string of variables.

No advection source is added by default.

#FRICTION command

#FRICTION
0.2 FrictionSi [1/s] (rest read if larger than 0)
0.5 FrictionUxDim
0.0 FrictionUyDim
0.0 FrictionUzDim

Define a friction force against a background fluid moving at velocity FrictionU = (FrictionUxDim, FrictionUyDim,
FrictionUzDim). The force is F = Friction*Rho*(FrictionU - U), where Friction is in normalized units (1/time), Rho
and U are the density and velocity vector of the first fluid, respectively. The current implementation is for the first fluid
with an explicit source term.

By default there is no friction.

#GRAVITY command

#GRAVITY
T UseGravity (rest of parameters read if true)
3 iDirGravity(0 - central, 1 - X, 2 - Y, 3 - Z direction)
10.0 GravitySi [m/sˆ2] (read if iDirGravity is not 0)

If UseGravity is false, the gravitational force of the central body is neglected. If UseGravity is true and iDirGravity
is 0, the gravity points towards the origin and the gravitational force is determined by the mass of the central body. If
iDirGravity is 1, 2 or 3, the gravitational force is parallel with the X, Y or Z axes, respectively, and the gravitational
acceleration is given by the GravitySi parameter.

Default values depend on problem type.
When a second body is used the gravity direction for the second body is independent of the GravityDir value.

Gravity due to the second body is radially inward toward the second body.

#ARTIFICIALVISCOSITY command

#ARTIFICIALVISCOSITY
T UseArtificialViscosity
0.3 AlphaVisco
0.3 BetaVisco

This command adds artificial viscosity (diffusion) to the density, moments and pressure equations based on the section
2.5.2 of the paper by P. McCorquodale and P. Colella (2010). The larger/smaller AlphaVisco/BetaVisco is the larger the
artificial viscosity will be. AlphaVisco should be non-negative and BetaVisco should be positive. The recommended
values are shown above.

Default is no artificial viscosity.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 143

#VISCOSITY command

#VISCOSITY
T UseViscosity
0.01 ViscosityCoeffSi [m2/s] (read if UseViscosity is true)

If UseViscosity is true, apply Navier-Stokes type viscosity using the viscosity coefficient ViscoCoeffSi.
Default is no viscosity.

#VISCOSITYREGION command

#VISCOSITYREGION
+magnetotail -nearbody StringViscoRegion

This command is only useful if viscosity is switched on with the #VISCOSITY command.
The StringViscoRegion string can specify the region(s) where viscosity is used. The regions must be described with

the #REGION commands. Note the ’tapered’ option in the shape desciption that can be used to make the transition
smoother.

The default is to apply viscosity everywhere if the it is switched on.

#RESISTIVITY command

#RESISTIVITY
T UseResistivity (rest of parameters read only if set to true)
anomalous TypeResistivity
1.0E+9 Eta0Si [m2/s] (read except for Spitzer resistivity)
2.0E+9 Eta0AnomSi [m2/s] (read for anomalous resistivity only)
2.0E+10 EtaMaxAnomSi [m2/s] (read for anomalous resistivity only)
1.0E-9 jCritAnomSi [A/m2] (read for anomalous resistivity only)

The true SI units of resistivity are Ohm m = Nm2/(A2s). In BATSRUS, however, we use ”normalized” units, so that
the magnetic permeability [N/A2] disappers from the equations. So what is described here as ”resistivity”, is really
eta/mu 0 which has units of [m2/s], same as (magnetic) diffusion. Since the normalized current is defined as curl B
(instead of curl B/mu0), the electric field is E = -u x B + eta * J in the normalized units.

If UseResistitivy is false, no resistivity is included. If UseResistivity is true, then one can select a constant resis-
tivity, the classical Spitzer resistivity, anomalous resistivity with a critical current, or a user defined resistivity.

For TypeResistivity=’Spitzer’ the resistivity is very low in space plasma. The only parameter read is the CoulombLog-
arithm parameter with typical values in the range of 10 to 30. Note that this can also be set with the #COULOMBLOG
command.

For TypeResistivity=’constant’ the resistivity is uniformly set to the parameter Eta0Si.
For TypeResistivity=’anomalous’ the anomalous resistivity is Eta0Si + Eta0AnomSi*(j/jCritAnomSi-1) limited by

0 and EtaMaxAnomSi. Here j is the absolute value of the current density in SI units. See the example for the order of
the parameters.

For TypeResistivity=’user’ only the Eta0Si parameter is read and it can be used to scale the resistivity set in sub-
routine user set resistivity in the ModUser module. Other parameters should be read with subroutine user read inputs
of the ModUser file.

The default is UseResistivity=.false.

#COULOMBLOG command

#COULOMBLOG
20.0 CoulombLog

Set the Coulomb logarithm for Spitzer resistivity and heat conduction. Default value is shown.

144 CHAPTER 3. INPUT PARAMETERS

#RESISTIVITYOPTIONS command

#RESISTIVITYOPTIONS
T UseResistiveFlux
T UseJouleHeating
F UseHeatExchange

Switch off negligible resistivity effects for sake of computational speed. If UseResistiveFlux is false, the resistive terms
in the induction equation are neglected. If UseJouleHeating is false and non-conservative equations are used then the
Joule heating is neglected in the electron/ion pressure equation. If UseHeatExchange is false, the heat exchange
between electron and ion pressures is neglected.

The defaults are true for all three logicals.

#RESISTIVEREGION command

#RESISTIVEREGION
+magnetotail -nearbody StringResistRegion

This command is only useful is the resistivity is switched on with the #RESISTIVITY command.
The StringResistRegion string can specify the region(s) where resistivity is used. The regions must be described

with the #REGION commands. Note the ’tapered’ option in the shape desciption that can be used to make the transition
smoother.

The default is to apply the resistive MHD scheme everywhere if it is switched on.

#HALLRESISTIVITY command

#HALLRESISTIVITY
T UseHallResist
1.0 HallFactorMax
0.1 HallCmaxFactor

If UseHallResist is true the Hall resistivity is used. All parameters are read even if it is false to allow setting the kinetic
scaling equal to HallFactorMax for MHD-EPIC, although it is better to use the #PICGRIDUNIT command for this
purpose.

The off-diagonal Hall elements of the resistivity tensor are multiplied by HallFactorMax. If HallFactorMax is 1
then the physical Hall resistivity is used (but also see the #HALLREGION command). Note that a physically consistent
way of changing the strength of the Hall effect is changing the ion mass and/or charge with the #PLASMA command.

If HallCmaxFactor is 1.0, the maximum propagation speed takes into account the full whistler wave speed. If it is
0, the wave speed is not modified. For values betwen 1 and 0 a fraction of the whistler wave speed is added. The full
speed is needed for the stability of the one or two-stage explicit scheme (unless the whistler speed is very small and/or
the diagonal part of the resistivity tensor is dominant). For 3 and 4-stage explicit schemes (see the #RK command) and
also for the semi-implicit and implicit time stepping the HallCmaxFactor can be reduced, possibly all the way to zero
to minimize the discretization errors. If the (semi-)implicit scheme does not converge well, using HallCmaxFactor
larger than zero (for example 0.1) can help.

Default is UseHallResist false.

#HALLREGION command

#HALLREGION
+magnetotail -nearbody StringHallRegion

This command is only useful if the Hall MHD scheme is switched on with the #HALLRESISTIVITY command.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 145

The StringHallRegion string can specify the region(s) where the Hall resistivity is used. The regions must be
described with the #REGION commands. Note the ’tapered’ option in the shape desciption that can be used to make
the transition smoother.

Each region has its own Hall factor, which is the ’Weight’ associated with the #REGION command. If ’Weight’ is
not read in, then HallFactorMax, which is set by #HALLRESISTIVITY, is used as the default.

The default is to apply the Hall MHD scheme everywhere if it is switched on.

#BIERMANNBATTERY command

#BIERMANNBATTERY
T UseBiermannBattery

If UseBiermannBattery is true then the Biermann battery term in the generalized Ohm’s law is used, otherwise it is
switched off.

If the Hall term is used in combination with the electron pressure equation then the Biermann battery term is
switched on by default. In that case the BIERMANNBATTERY command is not needed.

Default is UseBiermannBattery false.

#MINIMUMDENSITY command

#MINIMUMDENSITY
0.001 RhoMinDim for fluid 1
-1.0 RhoMinDim for fluid 2

Provide minimum density(s) for the ion/neutral fluid(s). If the minimum density is positive, the density is kept above
this limit for that fluid. The minimum density is given in the input/output units for density, which varies from applica-
tion to application. A negative value indicates that no minimum density is applied for that fluid.

By default no minimum density limit is applied.

#MINIMUMPRESSURE command

#MINIMUMPRESSURE
0.001 pMinDim for fluid 1
-1.0 pMinDim for fluid 2
0.002 PeMinDim for electron pressure (if used)

Provide minimum pressure(s) for the ion/neutral fluid(s) and electrons. If the pMinDim is positive, the pressure is kept
above this limit for that fluid. The minimum pressure is given in the input/output units for pressure, which varies from
application to application. A negative value indicates that no minimum density is applied for that fluid.

By default no minimum pressure limit is applied.

#MINIMUMTEMPERATURE command

#MINIMUMTEMPERATURE
5e4 TminDim for fluid 1
-1.0 TminDim for fluid 2
2e4 TeMinDim for electron pressure (if used)

Provide minimum temperature(s) for the ion/neutral fluid(s) and electrons. If the minimum temperature (TMinDim)
is positive, the temperature is kept above this limit. The minimum temperature is given in Kelvin. A negative value
indicates that no minimum temperature is applied for that fluid.

By default no minimum temperature limit is applied.

146 CHAPTER 3. INPUT PARAMETERS

#MINIMUMRADIALSPEED command

#MINIMUMRADIALSPEED
T UseSpeedMin
10 rSpeedMin
250 SpeedMinDim
10 h TauSpeedMinDim

If UseSpeedMin is true, the minimum speed is enforced. If the radial speed falls below SpeedMin beyond the radial
distance rSpeedMin, then a force is applied (via a source term) to push the solar wind speed above SpeedMin with a
time rate TauSpeedMinDim.

By default no minimum speed limit is applied.

#ELECTRONPRESSURE command

#ELECTRONPRESSURE
1.1e5 PeMinSi

Provide the minimum electron pressure threshold in SI units. Currently the minimum electron pressure is only used in
ModRadDiffusion. The default value is -1, i.e. no threshold is applied.

#ELECTRONENTROPY command

#ELECTRONENTROPY
T UseElectronEntropy
F UseElectronEnergy (only read if UseElectronEntropy=T)

If UseElectronEntropy is true, solve for the electron entropy Se defined as Se = Pe**(1/GammaE). The electron
entropy, unlike electron pressure, satisfies a pure conservation law, so it is well behaved across shocks.

If UseElectronEnergy is also true, include electron energy into the total energy equation for the conservative
scheme so that total energy is conserved.

Explicit electron heatconduction is not implemented for the electron entropy, but the semi-implicit heat conduction
works.

The default values are shown above. Note that #SHOCKHEATING switches both logicals to true.

#ENTROPY command

#ENTROPY
T UseIonEntropy
T UseTotalIonEnergy (only read for multi-ion equations)

If UseIonEntropy is true and the ion pressure is isotropic, then solve for the ion entropy density s defined as s =
P**(1/Gamma). The ion entropy, unlike ion pressure, satisfies a pure conservation law, so it is well behaved across
shocks. If the ion pressure is anisotropic, then solve for Sperp = Pperp/B and Spar = Ppar*(B/rho)**2.

For multiion case the UseTotalIonEnergy parameter is read. If it is true, the total ion energy equation is solved,
which is in conservation form. This is not yet implemented.

The default value of UseIonEntropy and UseTotalIonEnergy are false, except when the #SHOCKHEATING com-
mand is used, which requires and sets UseIonEntropy=T and UseTotalIonEnergy=T in the multiion case.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 147

#SHOCKHEATING command

#SHOCKHEATING
0.5 PeShockHeatingFraction (read if electron pressure is used)
1.0 PparShockHeatingFraction (read if ion pressure is anisotropic)
-0.4 PiShockHeatingFraction for ion fluid 2 (if exists)
-0.1 PiShockHeatingFraction for ion fluid 3 (if exists)

If electron pressure is solved for and PeShockHeatingFraction is set to a positive value, this fraction of the non-
adiabatic heating is deposited into the electron thermal energy Pe/(GammaE-1) between the electrons and the first ion
fluid. For a negative value the weights are multiplied by the number densities to the (2-gamma) power.

If anisotropic ion pressure is solved for and PparShockHeatingFraction is set to a positive value, then a fraction of
the non-adiabatic heating is deposited into the parallel ion energy, and the same amount of energy is removed from the
perpendicular ion energy. If PparShockHeatingFraction is negative, then the fraction of heating going into the parallel
pressure is abs(b.u), where b and u are the unit vectors for the magnetic field and velocity, respectively.

If multiple ion fluids are solved for and PiShockHeatingFraction is set to a positive value for ion fluid iFluid
(2...nIonFluid), then this fraction of the non-adiabatic heating is deposited into fluid iFluid between the first and
iFluid-th ion fluids. If PiShockHeatingFraction is set to a negative value, then the fluid weights are multiplied with
the number densities to the (2-gamma) power, which results in correct heating of two fluids with equal ion masses,
velocities and temperatures but different number densities.

If this command is used, UseIonEntropy, UseTotalIonEnergy and UseElectronEntropy are set to true (see #EN-
TROPY and #ELECTRONENTROPY).

Note that the fractions describe ratio of entropies, not energies. The scheme conserves the total energy and the
linear combination of entropies Weight2*Entropy1 - Weight1*Entropy2, where Weight1 and Weight2=1-Weight1 are
obtained from the various fractions defined by the command, while Entropy1 and Entropy2 are the volumetric entropy
densities, for example p/rhoγ for the isotropic case. For isotropic pressure and the same gamma for ions and electrons
the entropies and thermal energy densities p/(γ − 1) are closely related. For anisotropic ion pressure the entropy
densities depend on the magnetic field too, which makes things complicated.

Default values are 0, which means that all shock heating goes to the (perpendicular) ion pressure. For the multiion
case, total energy is only conserved if UseTotalIonEnergy is set to true (either here or in the #ENTROPY command),
otherwise the magnetic energy is ignored. Solving for individual ion energies will transfer some shock heating into
both ion fluids, but it may not be the correct distribution. This can be improved by using this command and prescribing
the energy distribution.

#ANISOTROPICPRESSURE command

#ANISOTROPICPRESSURE
T UseConstantTau fluid 1
10 TauInstabilitySi
100 TauGlobalSi
T UseConstantTau fluid 2
10 TauInstabilitySi
100 TauGlobalSi

Set parameters for the pressure relaxation term for each fluid. Note that in the previous version, TauInstabilitySi will
only be read if UseConstantTau is true. However, this version TauInstabilitySi will be read even UseConstantTau is
false.

If UseConstantTau is set to false, use the growth-rate based relaxation time. This is the default for single ion fluid
and also recommended.

If UseConstantTau is set to true (default for multiple ion fluids), then TauInstabilitySi provides the exponential
relaxation time in seconds to restrict the pressure anisotropy in unstable regions. Within the time, the parallel pressure

148 CHAPTER 3. INPUT PARAMETERS

is pushed towards plasma instability limits. The default value is -1, i.e, do not apply the pressure relaxation due to
instabilities. If applied, a typical value for magnetospheric simulations is 10 seconds.

TauGlobalSi provides the global pressure exponential relaxation time in seconds applied in the whole domain.
Within the time, the parallel pressure is pushed towards the total scalar pressure. In the presence of both the instability
and global relaxation, the one that changes pressure more will be used for the pressure relaxation term. The default
value for TauGlobalSi is -1, i.e. do not apply the global relaxation. The example shows a recommended value for
magnetospheric simulations.

When UseConstantTau = T and TauInstabilitySi = -1, the pressure relaxation term is not applied, thus TauGlobalSi
is meaningless in this case.

#EXTRAINTERNALENERGY command

#EXTRAINTERNALENERGY
-1e3 ExtraEintMinSi

Provide the minimum extra internal energy density threshold in SI units. The extra internal energy density is the
difference between true internal energy density and the p/(gamma-1) of the ideal gas. Using a large enough gamma
(e.g. 5/3) can guarantee that the difference is always non-negative. The default value is zero.

#RADIATION command

#RADIATION
T UseRadDiffusion (rest of parameters read only if true)
T UseRadFluxLimiter
larsen TypeRadFluxLimiter (read only if UseRadFluxLimiter is true)
300.0 TradMinSi

If UseRadDiffusion is true the radiation hydrodynamics with radiation nonequilibrium diffusion approximation is
used.

If the UseRadDiffusion is set to true, then optionally a non-linear flux limiter can be invoked via UseRadFluxLim-
iter set to true. This limits the radiation diffusion flux so that it does not exceed the optically thin streaming limit, the
speed of light. The type of flux limiter can be selected by setting TypeRadFluxLimiter.

If TypeRadFluxLimiter=”sum”, then Wilson’s sum flux limiter is used. If TypeRadFluxLimiter=”max”, then Wil-
son’s max flux limiter is used. For TypeRadFluxLimiter=”larsen” the square-root flux limiter of Larsen is used.

The TradMinSi parameter sets a minimum temperature in Kelvins for the radiation. This helps avoiding negative
radiation temperature due to numerical errors. A recommended value is 300K.

The default for UseRadFluxLimiter is false.

#HEATFLUXLIMITER command

#HEATFLUXLIMITER
T UseHeatFluxLimiter
0.06 HeatFluxLimiter

If UseHeatFluxLimiter is set to false, the original Spitzer-Harm formulation for the collisional isotropic electron
thermal heat conduction is used as set by the #SEMIIMPLICIT command.

If UseHeatFluxLimiter is set to true, this isotropic heat conduction is modified to correct the heat conduction
coefficient if the electron temperature length scale is only a few collisonal mean free paths of the electrons or smaller.
The flux limited heat conduction that is used in this case is the threshold model.

If we define the free streaming flux as F fs = n e*k B*T e*v th, where v th = sqrt(k B*T e/m e) is a characteristic
thermal velocity, then the threshold model limits the heat conduction flux F = -kappa*grad(Te), with heat conduction
coefficient kappa, by F = -min(kappa, f*F fs / —grad(Te)—) * grad(Te) Here, f is the heat flux limiter.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 149

A possible application of interest for the heat flux limiter is laser-irradiated plasmas. For this limiter to work
properly, the thermodynamic quanties in the user material properties subroutine in the ModUser module need to be
defined (see ModUserCrash for an example).

The default for UseHeatFluxLimiter is false.

#LASERPULSE command

#LASERPULSE
T UseLaserHeating (rest of parameters are read if true)
3.8e10 IrradianceSI [J/s]
1.0e-10 tPulse [s]
1.0e-11 tRaise [s]
1.0e-11 tDecay [s]

This command is used for CRASH applications and it requires a CRASH related user file.
Read parameters for the laser pulse. The irradiance determines the energy per second. The length, rise, and decay

times are given by the other three parameters. The laser heating is switched off by default.

#LASERBEAMS command

#LASERBEAMS
rz TypeBeam
30 nRayPerBeam
438.0 rBeam
-290.0 xBeam

This command is used for CRASH applications and it requires a CRASH related user file. This command should be
used together with the #LASERPULSE command.

The TypeBeam determines the geometry of the beams. Currently all beam definition are only available for rz-
geoemrty.

For TypeBeam=rz, each beam consists of 2*nRayPerBeam+1 rays. The rays are parallel and are up to 1.5 rBeam
away from the central ray. The xBeam determines the starting X position of the rays.

For TypeBeam=3d in rz-geometry there is the option for a beam definition on a polar or cartesian grid (The grid is
defined orthogonal to the initial ray propagation direction). On a polar grid the rays locations are defined on a uniform
grid with nRayR rays in the radial direction from 0 to 1.5*rBeam and nRayPhi+1 rays in the angle direction from 0
to pi. Due to symmetry properties in the laser beams the angle from pi to 2*pi are not needed. On a cartesian grid
the ray locations are defined on a 2*nRayY+1 by nRayZ+1 uniform grid. The y-direction ranges from -1.5*rBeam to
1.5*rBeam. Due to symmetry in each beam the z-direction is limited between 0 and 1.5*rBeam.

#LASERBEAM command

#LASERBEAM
10.0 SlopeDeg
0.0 yBeam
1.0 AmplitudeRel

This command is used for CRASH applications and it requires a CRASH related user file. This command should be
used together with the #LASERPULSE command.

The SlopeDeg parameter determines the direction of the beam relative to the X axis. The yBeam has to do with
the Y coordinate of the initial positions. The AmplitudeRel gives the relative intensity of the beam.

150 CHAPTER 3. INPUT PARAMETERS

#LASERBEAMPROFILE command

#LASERBEAMPROFILE
4.2 SuperGaussianOrder

This command is used for CRASH applications and it requires a CRASH related user file. This command should be
used together with the #LASERPULSE command.

The SuperGaussianOrder parameter determines the profile of each laser beam. The irradiance profile of the beam
is of the form exp[- (r / rBeam)**SuperGaussianOrder], where r is the distance to the tilted central ray of the beam
and rBeam is defined by the #LASERBEAMS command. The default value for SuperGaussianOrder is 4.2

#MASSLOADING command

#MASSLOADING
F UseMassLoading
F DoAccelerateMassLoading

#HEATCONDUCTION command

#HEATCONDUCTION
T UseHeatConduction
spitzer TypeHeatConduction

If UseHeatConduction is false, no heat conduction is included. If UseHeatConduction is true, then one can select
the collisional heat conduction of Spitzer or a user defined heat conduction. Both heat conduction formulations are
field-aligned and are only applied to the electrons.

For TypeHeatConduction=’spitzer’ a spatially uniform Coulomb logarithm of 20 is assumed by default, resulting
in a heat conduction coefficient of

9.2e-12 W mˆ-1 Kˆ-7/2.

Fully ionized hydrogen plasma is assumed. The Coulomb logarithm can be modified with the #COULOMBLOG
command.

For TypeHeatConduction=’user’ the heat conduction coefficient of the field-aligned heat conduction is read from
the user material properties subroutine in the ModUser module. Optional parameters should be read with subroutine
user read inputs of the ModUser file.

The default is UseHeatConduction=.false.

#IONHEATCONDUCTION command

#IONHEATCONDUCTION
T UseIonHeatConduction
spitzer TypeIonHeatConduction

If UseIonHeatConduction is false, no proton heat conduction is included. If UseIonHeatConduction is true, then one
can select the classical Coulomb-mediated ion heat conduction or a user defined heat conduction. Both heat conduction
formulations are field-aligned and are only applied to the protons.

For TypeIonHeatConduction=’spitzer’ a spatially uniform Coulomb logarithm of 20 is assumed by default, result-
ing in a heat conduction coefficient of

2.6e-13 W mˆ-1 Kˆ-7/2

for protons. A non-default value can be set with the #COULOMBLOG command.
For TypeIonHeatConduction=’user’ the heat conduction coefficient of the field-aligned heat conduction is read

from the user material properties subroutine in the ModUser module. Optional parameters should be read with sub-
routine user read inputs of the ModUser file.

The default is UseIonHeatConduction=.false.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 151

#HEATFLUXREGION command

#HEATFLUXREGION
T UseHeatFluxRegion
5.0 rCollisional
8.0 rCollisionless

If UseHeatFluxRegion is false, the electron heat conduction (as set by the #HEATCONDUCTION command), is
applied everywhere.

If UseHeatFluxRegion is true, the electron heat conduction is multiplied with a geometrical function depending on
the sign of rCollisionless. If rCollisionless is smaller than zero, then the electron heat is multiplied by

fS =
1

1 + (r/rCollisional)2
.

If rCollisionless is positive, then the electron heat conduction coefficient is multiplied by

fS = exp(−((r − rCollisional)/(rCollisionless− rCollisional)) ∗ ∗2).

In both cases, if the #HEATFLUXCOLLISIONLESS command is set, then the polytropic index in the electron pressure
equation is smoothly interpolated between γ in the collisional regime and γH in the collisionless regime:

γe = γfS + γH(1− fS),

where γH is defined in the #HEATFLUXCOLLISIONLESS command.
The default is UseHeatFluxRegion=.true.

#HEATFLUXCOLLISIONLESS command

#HEATFLUXCOLLISIONLESS
T UseHeatFluxCollisionless
1.05 CollisionlessAlpha

If UseHeatFluxCollisionless is true, an empirical model is used to mimic the collisionless electron heat conduction
(Hollweg, J.V., 1978). This empirical model reduces the polytropic index in the electron pressure equation to

γH =
γ + 3

2 (γ − 1)α

1 + 3
2 (γ − 1)α

,

where γ = 5/3 and α is the input parameter CollisionlessAlpha. For the default value α = 1.05, the polytropic index
for the electron pressure equation is reduced to γH ≈ 1.33. The collisionless heat flux only works if the equation
module contains the state variable Ehot . See van der Holst et al. 2014 for more details on this empirical model.

The default is UseHeatFluxCollisionless=.false.

#SECONDBODY command

#SECONDBODY
T UseBody2 ! Rest of the parameters read if true
1.0 rBody2
0. MassBody2Si [kg] ! If 0, the second body gravity is 0
1.0 Body2NDim [/cc] density for fixed BC for rho_BLK
1000.0 Body2TDim [K] temperature for fixed BC for P_BLK
F UseBody2Orbit
1. xBody2 ! only read if UseBody2Orbit is false
0. yBody2 ! only read if UseBody2Orbit is false
0. zBody2 ! only read if UseBody2Orbit is false

152 CHAPTER 3. INPUT PARAMETERS

Defines the radius, position, surface density and temperature, of a second body. The second body may also have mag-
netic field given by the #DIPOLEBODY2 command. This command should appear before the #INNERBOUNDARY
command when using a second body. MassBody2Si is used to calculate the gravity force.

If UseBody2Orbit is .true., the orbit of the second body is traced using orbit elements set in CON planet in the
shared module, assuming that the central body is the Sun (or a star set in CON star), so that the orbit elements are
set in the HGI coordinate system. In this case, xBody2, yBody2, zBody2 are not read. Otherwise the position of the
second body is defined by xBody2, yBody2, and zBody2.

Default is UseBody2 false.

#DIPOLEBODY2 command

#DIPOLEBODY2
0.0 BdpDimBody2x [nT]
0.0 BdpDimBody2y [nT]
-1000.0 BdpDimBody2z [nT]

The BdpDimBody2x, BdpDimBody2y and BdpDimBody2z variables contain the 3 components of the dipole vector
in the GSE frame. The absolute value of the dipole vector is the equatorial field strength in nano Tesla.

Default is no dipole field for the second body.

3.8.18 Corona specific commands
#FACTORB0 command

#FACTORB0
1e-4 FactorB0

FactorB0 is a multiplication factor for the magnetogram based potential field B0. It can be used to correct the magnetic
field units (default is Gauss) or to change the strength of the field.

Default value is 1.

#HARMONICSGRID command

#HARMONICSGRID
1.0 rMagnetogram
2.5 rSourceSurface
F IsLogRadius
30 MaxOrder
30 nR
72 nLon
30 nLat

#HARMONICSGRID
1.0 rMagnetogram
25.0 rSourceSurface
T IsLogRadius
180 MaxOrder
400 nR
180 nLon
90 nLat

This command determines the grid used in the B0 and B0New lookup tables generated from the spherical harmonics.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 153

The radial grid goes from the inner boundary at rMagnetogram (typically 1) to the source surface radius rSourceSur-
face where B0 becomes radial. The longitude goes from 0 to 360 degrees, while the latitude from -90 to 90 degrees.
Both angular coordinates are uniform (no sine latitude grid).

Traditionally rSourceSurface is 2.5, but this may not be the best choice. Setting rSourceSurface to 25.0 eliminates
the non-zero curl of B0 inside the SC domain, so #CURLB0 command is not needed and numerical artifacts are
minimized. In essense, B0 should capture the field near the active regions but it does not need to represent the helmet
streamer or the heliospheric current sheet. Those features are best captured by the B1 field obtained from solving the
MHD equations. When rSourceSurface is much larger than rMagnetogram, it is recommended to use a logarithmic
radial grid with IsLogRadius set to true.

MaxOrder sets the maximum harmonics order used. This may get reduced to the order present in the harmonics
files read by #HARMONICSFILE and #NEWHARMONICSFILE. If MaxOrder is less than the order present in the
files, then the higher order harmonics are ignored.

nR, nLon and nLat give number of grid cells in the radial, longitudinal and latitudinal directions, respectively. The
B0 field is stored on the grid (nR+1)*(nLon+1)*(nLat+1) grid nodes.

Default values are shown by the first example.

#HARMONICSFILE command

#HARMONICSFILE
Param/CORONA/CR1935_WSO.dat NameHarmonicsFile

NameHarmonicsFile is the name of the file containing the harmonics coefficients.
After reading the harmonics file, the B0 lookup table is generated and saved. By default this lookup table is saved

into ”harmonics bxyz.out” file. The defaults can be changed with the #LOOKUPTABLE command. Once the lookup
table file is created, it can be loaded directly and there is no need for this command.

The temporal evolution of the magnetogram can be captured by using an additional B0NEW lookup table. See
also the #NEWHARMONICSFILE command.

By default there is no B0 lookup table.

#NEWHARMONICSFILE command

#NEWHARMONICSFILE
Param/CORONA/CR1936_WSO.dat NameHarmonicsFileNew

NameHarmonicsFileNew is the name of the file containing the harmonics coefficients for the time at the end of the
session.

After reading the harmonics file, the B0NEW lookup table is generated and saved into the ”harmonics bxyz new.out”
file. The default parameters of the lookup table can be changed with the #LOOKUPTABLE command. Once the
lookup table file is created, it can be loaded directly and there is no need for this command.

The potential field contained in the B0 and B0NEW lookup tables will be interpolated in time during the session.
By default there is no B0NEW lookup tables.

#MAGNETOGRAM command

#MAGNETOGRAM
T UseMagnetogram (rest of parameters read if true)
1.0 rMagnetogram
2.5 rSourceSurface
0.0 HeightInnerBc (not used)
Param/CORONA/CR1935_WSO.dat NameHarmonicsFile

154 CHAPTER 3. INPUT PARAMETERS

This command is obsolete and has been replaced with the #HARMONICSFILE command.
If UseMagnetogram=T then read the harmonics file for the coronal magnetic field and use it to set B0 to the

potential field solution.
rMagnetogram and rSourceSurface are the photosphere and source surface heliocentric radii, respectively. B0

becomes radial at rSourceSurface (typically taken to be 2.5 solar radii).
HeightInnerBc is the height above the photosphere of the boundary surface, non-zero values for this parameter are

not recommended to unexperienced users.
NameHarmonicsFile is the name of the file containing the harmonics.
Default is UseMagnetogram=F.

#LDEM command

#LDEM
F UseLdem (rest of parameters read if true)
LDEM_moments.out NameLdemFile
1 iRadiusLdem

If UseLdem=T then read the LDEM moments file for the coronal density and temperature.
NameLdemFile is the name of the file containing the Ldem moments.
iRadiusLdem gives the index of the desired radius at which data is extracted. The Ldem moments data is ordered

into concentric spherical shells of increasing radius, ranging from 1.035Rs to 1.255Rs, in increaments of 0.01Rs. The
user can select the desired radius by varying the iRadiusLdem parameter. The minimal accepted value of iRadiusLdem
is 1, corresponding to 1.035Rs. iRadiusLdem=2 corresponds to 1.045Rs, and so forth.

Default is UseLdem=F, iRadiusLdem=1

#EMPIRICALSW command

#EMPIRICALSW
WSA NameModelSW

Depending on the expansion factors, calculated using the magnetogram field, for NameModelSW=WSA the spatial
distribution of varied gamma is calculated. Through the Bernoulli integral the solar wind at 1AU should fit the WSA
solar wind semi-empirical model, with the prescribed distribution of the varied gamma. Default value is NameMod-
elSW=none.

#WSACOEFF command

#WSACOEFF
240.0 ConstantSpeed [km/s]
675.0 ModulationSpeed [km/s]
4.5 PowerIndex1
1.0 Coeff1
0.8 Coeff2
2.8 Angle [deg]
1.25 PowerIndex2
3.0 PowerIndex3
0.0 LowerBound
9999.0 UpperBound

Read in various parameters for the Wang-Sheely-Arge model. The exact meaning of the parameters should be obtained
from publications on the WSA model. Default values are show.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 155

#POYNTINGFLUX command

#POYNTINGFLUX
0.3E6 PoyntingFluxPerBSi [J/mˆ2/s/T]

The boundary condition for the Alfven wave energy density is empirically set by prescribing the Poynting flux SA of
the outgoing waves. The wave energy density w (w+ for positive radial magnetic field Br and w− for negative Br)
then follows from SA = VAw ∝ B�, where VA is the Alfven speed, B� is the field strength at the inner boundary
and the proportionality constant is estimated in Sokolov et al. (2013) as (SA/B)� = 1.1 × 106 Wm−2 T−1. Under
the assumption of sufficiently small returning flux, this estimate of the Poynting-flux-to-field ratio is equivalent to the
following averaged velocity perturbation

(δu⊥ · δu⊥)1/2 ≈ 15 km s−1
(
3 · 10−11 kgm−3

ρ

)1/4

, (3.3)

where the mass density 3 · 10−11 kgm−3 (ion number density Ni = 2 · 1016 m−3) corresponds to the upper chro-
mosphere. This value is compatible with the Hinode observations of the turbulent velocities of 15 km s−1. Hence, the
energy density of the outgoing wave is set to w = (SA/B)�

√
µ0ρ.

Default value for PoyntingFluxPerBSi is 1.0E6.

#CORONALHEATING command

#CORONALHEATING
exponential TypeCoronalHeating
0.0575 DecayLengthEXP [Rsun] (read for exp heating only)
7.285E-05 HeatingAmplitudeCgs [ergs/cmˆ3/s] (read for exp heating only)

#CORONALHEATING
unsignedflux TypeCoronalHeating
0.0575 DecayLength [Rsun] (read for unsignedflux heating only)
1.0 HeatNormalization [none] (read for unsignedflux heating only)

#CORONALHEATING
alfvenwavedissipation TypeCoronalHeating
7.5E4 LperpTimesSqrtBSi (read for alfvenwavedissipation only)
0.04 Crefl (read for alfvenwavedissipation only)

#CORONALHEATING
turbulentcascade TypeCoronalHeating
1.5e5 LperpTimesSqrtBSi (read for turbulentcascade only)
0.0 rMinWaveReflection
F UseReynoldsDecomposition
1.0 KarmanTaylorBeta (for UseReynoldsDecomposition only)

#CORONALHEATING
usmanov TypeCoronalHeating
T UseTransverseTurbulence (read for usmanov only)
-1/3 SigmaD (read for usmanov only)
1.0 KarmanTaylorAlpha (read for usmanov only)
0.5 KarmanTaylorBeta2AlphaRatio (read for usmanov only)

If UseCoronalHeating is false, no CoronalHeating is included. If UseCoronalHeating is true, then one can select a
simple exponential scale height heating model or B weighted heating model normalized to the amount of unsigned
flux measured at the soalr surface (Abbett 2007). Each model applies a cell based source term to the Energy equation.

156 CHAPTER 3. INPUT PARAMETERS

For TypeCoronalHeating=’exponential’ coronal heating is applied using an exponential scale height model. De-
cayLengthExp is the e-folding length in units of Solar Radii and HeatingAmplitudeCgs is the heating rate at r=1.0

For TypeCoronalHeating=’unsignedflux’ the coronal heating term is calculated using the unsigned flux model
presented in (Abbett 2007). DecayLengthExp is the e-folding length in units of Solar Radii to limit the range of
influence of this function. Because the total power in X-Ray emission is not well constrained to total heating power in
the corona, the term HeatNormalization is used to uniformly multiply the heating rate by this factor (default 1.0).

For TypeCoronalHeating=’NonWKB’ coronal heating is applied using the wave dissapation model of Cranmer
2010. No additional input parameters are needed.

For TypeCoronalHeating=’alfvenwavedissipation’ coronal heating is applied using an anisotropic formulation of
the Kolmogorov-type dissipation.

For TypeCoronalHeating=’turbulentcascade’, the Alfven wave energy density equations account for the partial re-
flection of Alfven waves due to Alfven speed gradients and field-aligned vorticity. The resulting counter propagating
waves are responsible for the nonlinear turbulent cascade. The dissipation rate for the wave energy density, w+, is
controlled by the amplitude of the oppositely propagating wave, |z−| = 2

√
w−/ρ, and is inversely proportional to

the correlation length, L⊥, in the transverse (with respect to the magnetic field) direction. Similar to Hollweg (1986)
we use a simple scaling law L⊥ ∝ B−1/2 with the proportionality constant L⊥

√
B as input parameter LperpTi-

mesSqrtBSi. off in the cells, at which R BLK(i,j,k,iBlock) < rMinWaveReflection. If UseReynoldsDecomposition is
set true, there are two options, depending on how the code is configured. If the extra state variable, WDiff is set up,
then switching on UseReynoldsDecomposition will result in solving three wave energy equations, for W +, W - and
W D, the latter being a difference between the turbulent kinetic and magnetic energy densities, with the intermode
exchange (”reflection”) coefficients are properly limited to avoid spurios oscillations in the numerical solution. Oth-
erwise, if WDiff state variable is not introduced, however, UseReynoldsDecomposition is set to true, then the only
element of the Reynolds-decomposed new model is employed, namely the limiter for the reflection coefficient, which,
again, may be used to avoid spurious oscillations.

For TypeCoronalHeating=’usmanov’ (to be continued: I more or less know what does this mean, however, it is
better to ask Bart to comment on this - may be not right now -IS).

The default is TypeCoronalHeating=”none”

#LIMITIMBALANCE command

#LIMITIMBALANCE
2.0 MaxImbalance

This command allows the user to adjust (usually, reduce) the reflection of Alfven waves in the coronal hole, if the
”turbulentcascade” type of coronal heating is applied. In brief, the reflected energy flux is limited by the 1/(MaxIm-
balance**2) fraction of the outgoing turbulent energy flux. If MaxImbalance=2 (default value), this agrees with the
usual assumption that 80=1/(2**2) of the outward propagated turbulence) is reflected toward the Sun.

#LONGSCALEHEATING command

#LONGSCALEHEATING
T DoChHeat (rest of parameters read only if set to true)
7.285E-05 HeatChCgs [ergs/cmˆ3/s]
0.0575 DecayLengthCh [Rsun]

If DoChHeat is false, no long scale height heating is included. If DoChHeat is true, one supplies parameters for a
simple exponential scale height heating model like that in the CORONALHEATING command. HeatChCgs sets the
base heating rate ar r=1.0 [Rsun] and DecayLengthCh is the e-folding length in units of Solar Radii. The idea is to
use this commmand in conjunction with any short scale height heating model selected by the CORONALHEATING
command.

The default is DoChHeat=.false.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 157

#ACTIVEREGIONHEATING command

#ACTIVEREGIONHEATING
T UseArComponent (rest of parameters read only if set to true)
4.03E-05 ArHeatFactorCgs [ergs/cmˆ3/s]
30.0 ArHeatB0 [Gauss]
5.0 DeltaArHeatB0 [Gauss]

If UseArComponent is false, no ActiveRegion heating component is used. If UseArComponent is true, one supplies
parameters for a linear B weighted heating model used to supply strong heating to regions of high magnetic field
strength. This model multiplies ArHeatFactorCgs by the cell magnetic field strength in gauss to determine a heating
rate. ArHeatB0 is the central field strength for the tanh transition function that selects between the exponential heating
model supplied by the CORONALHEATING command and the ArHeating term. DeltaArHeatB0 is the width of
this transition function. This transition function has values: approx 0.1 at b0-deltab0, 0.5 at b0, and approx 0.9 at
b0+deltab0.

This heating is ONLY applied when CORONALHEATING is set to the exponential heating model at the moment.
The default is UseArComponent=.false.

#OPENCLOSEDHEAT command

#OPENCLOSEDHEAT
T DoOpenClosedField

If DoOpenClosedHeat=.true., then the heating function or the turbulent heating rate are modulated from closed to
open magnetic field. Exponential heating function as well as the unsigned flux model function are switched off in the
open field region. With the Cranmer heating function, the reflection coefficient in the closed field region is set to one,
intensifying the heating.

Default is DoOpenClosedField = .false.

#NONLINAWDISSIPATION command

#NONLINAWDISSIPATION
T UseNonLinearAWDissipation

Intensifies the Alfven wave disssipation in the regions of weak field

#HEATPARTITIONING command

#HEATPARTITIONING
uniform TypeHeatPartitioning
0.6 QionRatio
0.0 QionParRatio (if used)

#HEATPARTITIONING
stochasticheating TypeHeatPartitioning
0.21 StochasticExponent
0.18 StochasticAmplitude

If the #CORONALHEATING command is used in combination with more than one pressure state variable, then the
heat partitioning is automatically called. The type of heat partitioning can be selected with the #HEATPARTITION-
ING command.

TypeHeatPartitioning=’uniform’ is the default. QionRatio is the fraction of the coronal heating that is used for the
ion heating, while QionParRatio is the fraction of the coronal heating that is used for the parallel ion heating. The
fraction of electron heating is 1.0-QionRatio.

158 CHAPTER 3. INPUT PARAMETERS

If TypeHeatPartitioning=’stochasticheating’, then the heat partitioning follows a strategy based on the dissipation
of kinetic Alfven waves. In particular we employ the stochastic heating mechanism for the perpendicular proton tem-
perature (chandran, 2011). In this mechanism, the electric field fluctuations due to perpendicular turbulent cascade
can disturb the proton gyro motion enough to give rise to perpendicular stochastic heating, assuming that the veloc-
ity perturbation at the proton gyro-radius scale is large enough. See van der Holst et al. (2014) for details of the
StochasticExponent and StochasticAmplitude input parameters. The maximum possible StochasticExponent is 0.34
for randomly phased kinetic Alfven waves.

#CHROMOSPHERE command

#CHROMOSPHERE
F UseChromosphereHeating
2e11 NeChromosphereCgs
5e4 TeChromosphereSi

Set plasma parameters at top of chromosphere. If desired, the special heating function may be applied to maintain a
hydrostatic density profile in the chromosphere at constant electron temperature TeChromosphereSi. May be used if
the chromosphere region is included into a computational domain or to specify the boundary condition for the analytic
emission model from the transition region.

#RADIATIVECOOLING command

#RADIATIVECOOLING
T UseRadCooling

Switches the radiation cooling on and off. For coronal solar plasma the emissivity calculated in the ”coronal” approxi-
mation (optically thin plasma with no radiation-induced excitations and ionization). The radiation loss rate is approxi-
mated using CHIANTI tables or approximate interpolation formula (see comments in src/ModRadiativeCooling.f90).
Default value for UseRadCooling is .false.

3.8.19 Threaded low solar corona
#FIELDLINETHREAD command

#FIELDLINETHREAD
T UseFieldLineThreads
200 nPointThreadMax
0.002 DsThreadMin

If the logical, UseFieldLineThreads is set to .true., then, from center of physical cell near the inner boundary, the
magnetic field line (tread) is traced toward photosphere, by integrating equation dx/ds = B/ —B— with a step, ds =
DsThreadMin.

While integrated, the line is not allowed to turn back (outward the Sun). Except for this, no other means is used
to help the line to reach the photosphere. If within nPointThreadMax steps the photosphere is not reached by any
line, it is traced again, with the integration step being ds = 2*DsThreadMin now, and within this second and last (for
the given line) integration, the angle is limited between the line and radial direction, so that the line, is guaranteed
to reach the photosphere within nPointThreadMax in the course of the second tracing. The line shape is arbitralily
distorted in this case, that is why the product, nPointThreadMax*DsThreadMin, which is the maximum length of the
undistorted should be not too small: it should well exceed the straight line distance, D, from the physical cell center to
the photosphere:

On the other hand, the physical length of ”bad” lines, which may be as long as 2*DsThreadMin*nPointThreadMax,
should not be too long, to prevent the heating instability, which cannot be balanced by heat conduction when the

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 159

boundaries are too far. With this regard, the right hand side of the above inequality provides both lower and, at the
same time, upper estimate for the product in the left hand side.

The set of points on the line obtained in the course of integration form equally spaced grid on the thread (with
the mesh egual to DsThreadMin for the most of threads, and twice this for the other) on which to solve the governing
equations. The minimum number of gridpoints on thread is reported each time when the threads are generated. If
this number is too small, the resolution and approximation are bad. Particularly, if the above settings are applied with
the low boundary for SC grid at 1.05 Rs, then the distance from the physical cell center to the photosphere may be
about 0.06, so that the grid point nmber, in principle, can be as low as 0.06/(2*0.02) = 15, which is evidently too small
(nPointThreadMax = 150 and DsThreadMin = 0.001 are preferred).

#PLOTTHREADS command

#PLOTTHREADS
T DoPlotThreads (read rest if true)
10 nGUniform
T UseTRCorrection
F UsePlanarTriangles

Used for plotting images in the solar corona. The threaded gap contributes to the line-of-site integrals determining the
intensity of the image pixel if DoPlotThreads is true. The threaded gap is split into nGUniform intervals uniformly in
the first generalized coordinate.

If UseTRCorrection is true, the contribution frop the threaded gap to the LOS plots is corrected to account for the
contribution from transition region.

When triangulation on sphere as described above is completed, interpolation weights can be assigned in two ways:
via the areas of spherical triangles (UsePlanarTriangle=F) or via areas of planar triangles (UsePlanarTriangle=T). The
latter is the interpolation algorithm by Renka, who proved its good theoretical properties, such as continuity of the
interpolated valiable across the boundary of the interpolation stencil.

Default values are shown above.

#THREADEDBC command

#THREADEDBC
T UseAlignedVelocity
F DoConvergenceCheck
limited TypeBc (first/second/limited)
1e-6 Tolerance
20 MaxIter

This command sets things for the threaded field line algorithm. Ask Igor Sokolov if you want to learn more. Default
values are shown.

#CHROMOEVAPORATION command

#CHROMOEVAPORATION
F UseChromoEvaporation

By default, this logical is .false. the entholpy increase needed to heat the plasma flow across the transition region to
the top temperature is neglected. If logical set is true, the energy flux to/from the first control volume is accounted for.

160 CHAPTER 3. INPUT PARAMETERS

#TRANSITIONREGION command

#TRANSITIONREGION
T DoExtendTransitionRegion
3.0E+5 TeTransitionRegionSi
1.0E+4 DeltaTeSi (read if DoExtendTransitionRegion is true)

The artificial expansion of the transition region is needed to resolve the Transition Region (TR) which is an extremely
thin region in reality. To achieve the expansion, at temperatures below TeTransitionRegionSi the heat conduction
coefficient is artificially enhanced and the radiation loss rate is modified accordingly. The profile of temperature and
density in this case are maintained to be the same as in the actual transition region, however, the spatial scale becomes
much longer, so that the TR may be modelled with feasible grid resolution.

If DoExtendTransitionRegion is false, the #TRANSITIONREGION command can be used to set the temperature
of the top of the transition region. Then the special boundary condition (REB - radiation energy balance) is used at the
”coronal base”, while the temperature is fixed at Te=TeTopTransitionRegion.

Default value is DoExtendTransitionRegion = .false. and TeTransitionRegionSi = 4e5.

#THREADRESTART command

#THREADRESTART
T DoThreadRestart

If the logical DoThreadRestart is set to true, at the initial iteration the plasma state on the threaded field lines is
recovered from the saved files otherwise it is calculated from scratch.

3.8.20 Heliosphere specific commands
#THINCURRENTSHEET command

#THINCURRENTSHEET
F DoThinCurrentSheet

The thin current sheet option is based on the thin current sheet method of the ENLIL code. Numerical reconnection of
magnetic field about the heliospheric current sheet is avoided by reversing the field direction in one hemisphere (the
hemisphere for which the radial magnetic is negative). This method assumes that there is no guide field, which would
otherwise start to reconnection. It is only intended for inner and outer heliosphere simulations, assuming no coronal
mass ejections are present.

This method requires an equation model that contains the SignB variable. This variable is used to track where the
field is reversed and where the current sheet is located by using a level set method for the sign.

Default value is DoThinCurrentSheet = .false.

#ALIGNBANDU command

#ALIGNBANDU
T UseSaMhd (rest read if UseSaMhd is true)
1.1 RsourceSaMhd
3.5 RminSaMhd

To use this command, the BperU variable of the state vector should be declared in the ModEquation (the possible
choice is -e=AwsomSA). Given proper boundary conditions, in steady state the streamlineas and magnetic field lines
are aligned and the ratio of magnetic flux to mass flux is constant along the magnetic flux tube, hence the ratio of the
magnetic field strength to velocity obeys a conservation law.

Below RsourceSaMhd the UperB variable is set as U.B/U2. If RsourceSaMhd is zero, then the SaMhd variable is
either obtained from the model below, for example from SC to IH, or set to zero identically.

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 161

Above RminSaMhd, the magnetic field is enforced to be aligned with the velocity vector and equal to the velocity
vector multipled by the local value of the SaMhd variable. If RminSaMhd is zero, then the magnetic field is aligned
everywhere. If it is negative or larger than the size of the domain, then it is not aligned anywhere. The above setting is
recommended for the steady-state SC. The recommended setting for the coupled steady state IH is

#ALIGNBANDU
T UseSaMhd
0.0 RsourceSaMhd ! Coupled
0.0 RminSaMhd ! Applied everywhere

For the time accurate run in SC one can set UseSaMhd to false, while in IH one may want to gradually increase Rmin-
SaMhd to keep good steady-state solution in the region not affected by the time-accurate perturbation prropagating
outward.

Default is UseSaMhd false.

#HELIOUPDATEB0 command

#HELIOUPDATEB0
-1.0 DtUpdateB0 [s]

Set the frequency of updating the B0 field for the solar corona. A negative value means that the B0 field is not updated.

#HELIODIPOLE command

#HELIODIPOLE
-0.0003 HelioDipoleStrengthSi [Tesla]
0.0 HelioDipoleTilt [deg]

Variable HelioDipoleStrengthSi defines the equatorial field strength in Tesla, while HelioDipoleTilt is the tilt relative
to the ecliptic North (negative sign means towards the planet) in degrees.

Default value is HelioDipoleStrengthSi = 0.0.

#UNIFORMB0 command

#UNIFORMB0
5.0e-4 UniformB0Si
0.0 UniformB0Si
0.0 UniformB0Si

Three components of uniform B0 field. In the example above there is a uniform field of 5E-4 T = 5 G along the x
axis. Exception is the case of rz-geometry, in which the intensity of Phi (third) field component should be divided by
dimensionless r.

#HELIOBUFFERGRID command

#HELIOBUFFERGRID
2 nRBuff
90 nLonBuff
45 nLatBuff
19.0 RBuffMin
21.0 RBuffMax

162 CHAPTER 3. INPUT PARAMETERS

Define the radius and the grid resolution for the uniform spherical buffer grid which passes information from the
SC(IH) component to the IH(OH) component. The resolution should be similar to the grid resolution of the coarser
of the SC(IH) and IH(OH) grids. The buffer grid will only be used if ’buffergrid’ is chosed for TypeBcBody in the
#INNERBOUNDARY command of the target (IH or OH) component. This command can only be used in the first
session by the IH(OH) component. Default values are shown above.

#RESTARTBUFFERGRID command

#RESTARTBUFFERGRID
T DoRestartBuffer
HGR TypeCoordSource

If DoRestartBuffer is true, the MHD state on the buffer grid is restored from the restart file. The coordinate system is
defined by TypeCoordSource. This command is usually read from the restart.H file.

Default value is DoRestartBuffer false.

3.8.21 Wave specific commands

#ADVECTWAVES command

#ADVECTWAVES
T DoAdvectWaves

If DoAdvectWaves = .true. the waves are advected in the energy dimension. This term may be very small and it can
be switched off for purposes of testing or comaparison with other codes that do not have this term.

The default is false.

#ALFVENWAVES command

#ALFVENWAVES
T UseAlfvenWaves

If UseAlfvenWaves = .true. the waves are separated into two sets, one of them (’plus’) propagate parallel to the
magnetic field, the second one (’minus’) is for waves propagating anti-parallel to the field. The propagation speed
with respect to the background plasma is ±V A = ±|B|/√ρ.

#AWREPRESENTATIVE command

#AWREPRESENTATIVE
F UseAwRepresentative

If UseAlfvenWaveRepresentative is .true., in ExplicitAdvance at the beginning the wave energy densities are divided
by sqrt(Rho)*PoyntingFluxPerB, to get representative functions, for which the equations and boundary conditions are
easier to handle. After the stage loop, the functions are converted back to physically meaningful wave energy densities.

3.8.22 Particles

#PARTICLELINE command

Recommended version for IH/OH (the field line and particle numbers depend on both pratical needs and available
computational resources)

3.8. INPUT COMMANDS FOR THE BATSRUS: GM, EE, SC, IH AND OH COMPONENTS 163

#PARTICLELINE
T UseParticles
16 nFieldLineMax
1000 nParticlePerLine
-1 SpaceStepMin
-1 SpaceStepMax
import InitMode
T UseBRAlignment
0.1 CosBRAngleMax
T UseBUAlignment
0.85 CosBUAngleMax

Recommended version for SC

#PARTICLELINE
T UseParticles
16 nFieldLineMax
1000 nParticlePerLine
-1 SpaceStepMin
-1 SpaceStepMax
import InitMode
T UseBRAlignment
0.7 CosBRAngleMax
F UseBUAlignment

The command defines the class of advected magnetic field lines, consisting of ”particles” which are essentially the
Lagrangian grid points. Initially, the magnetic field lines are traced starting from the origin point set, determined by
the value of InitMode parameter (their coordinated are imported from another model or just preset in the parameter
file).

Based on values of SpaceStepMin and SpaceStepMax space step may be
Field lines may need to be corrected during tracing. If the line ’too much deviates’ from radial direcction (turns

toward the Sun or tends to turn), its direction is corrected to keep outward direction. If the tracing occurs just after
computing the steady state solution of the solar wind the corrrection limits the angle between the line direction (= the
magnetic field vector direction) and that of the solar wind velocity in the corotating frame of reference. The magnetic
field and velocity vectors may be parallel or antiparallel. In case the magnetic field line intersects the current sheet,
the traced line is gradually switched between parallel and antiparallel directions, keeping the general direction along
the Parker spiral.

3.8.23 Script commands
#INCLUDE command

#INCLUDE
GM/restartIN/restart.H NameIncludeFile

Include a file. The most useful application is including the restart header file as show by the example. Including this
file helps making sure that the original and restarted runs use consistent settings. The #INCLUDE command can also
be useful if a sequence of commands is used many times in different parameters files. For example one can define a
typical grid for some application and reuse it. Nested include files are allowed but not recommended, because it makes
things difficult to track. Using #INCLUDE can make the main PARAM.in file shorter. On the other hand, distributing
the input information over several files is more error prone than using a single file. A PARAM.in file with included
files can be expanded into a single file with the

164 CHAPTER 3. INPUT PARAMETERS

share/Scripts/ParamConvert.pl run/PARAM.in run/PARAM.expand

script. Note that the include command for the restart header file is not expanded.
The default is to use a single PARAM.in file.

Chapter 4

Output files

4.1 Restart files
Restart files contain all the necessary information that enables BATS-R-US to continue a simulation from a given
point. The parameters following the #SAVERESTART command in PARAM.in determine when the restart files are
written to the disk. The restart files are written into the output restart directory, which has the default name

restartOUT/

The default name can be changed with the #RESTARTOUTDIR command in PARAM.in. The state variables are
stored in the binary files

restartOUT/blkGLOBALBLKNUMBER.rst

Note that the files are written out block by block, so that at restart the blocks can be distributed among the processors
differently than they were at the time of the save. This means that a simulation can be continued with a different number
of processors after restart. On the other hand the file names do not contain the time step, so they get overwritten every
time new restart files are produced. This avoids the problem of filling up the disk with restart files. The only way to
keep restart files is to rename the restartOUT directory. For example

mv restartOUT restart_n120000
mkdir restartOUT

Remember to create an empty restartOUT directory, otherwise the code will crash when it attempts to write a restart.
Moving the restartOUT file can be done even while the code is running, except when the restart files are being written.
Alternatively you can create several directories in advance and change the name of the output restart directory with
the #RESTARTOUTDIR command from session to session.

If you want BATS-R-US to read the restart files in, they have to be located in the input restart directory. The default
name is

restartIN/

Rather than moving the files into this directory, we suggest the use of a symbolic link. For example

ln -s restart_n120000 restartIN

will make the code read the files from the restart n120000 directory if a restart is initiated in PARAM.in. Alter-
natively, you can use the #RESTARTINDIR command in the PARAM.in file to change the name of the input restart
directory.

In addition to the block data files, the restart directory contains two more files. The octree grid structure is described
by the binary file

165

166 CHAPTER 4. OUTPUT FILES

restartOUT/octree.rst

while the ASCII header file

restartOUT/restart.H

contains time step and time information for the restart. It also signals whether the restart files contain extra data for
face centered magnetic field variables for the constrained transport scheme.

4.1.1 Conversion of binary restart files with ConvertRestart.pl

The binary restart files, like all binary Fortran files, are platform dependent. Platforms differ in how they order the
bytes in the 4 or 8 byte data units, such as integers, real numbers, logicals and record length markers. For example the
Linux PC, the SGI Altix and the Compaq OSF1 machines are ’little endian’, while the SGI Origin is ’big endian’.

We have developped a tool that makes the conversion of the restart files rather easy. The Scripts/ConvertRestart.pl
perl script can convert a complete restart directory, for example

mkdir run/restart_converted
Scripts/ConvertRestart.pl run/restart_original run/restart_converted

Depending on the number and size of the restart files conversion may take from a few minutes to an hour.

4.2 Logfiles

The logfiles are very useful to check conservation of quantities, to see when not-a-numbers (NaN) first appeared before
the code crashed, or it can contain physically relevant pointwise values. Writing the logfile is fairly fast, and the logfile
is relatively small, so it can be easily done every time step if that is necessary (e.g. for debugging).

The ASCII logfile is written into the plot directory. The default name is

IO2/

The name of the directory is historical (there used to be an IO directory), and it can be changed with the #PLOT-
DIR command in the PARAM.in file. The frequency of saves and the content of the logfile are controlled by the
#SAVELOGFILE command in PARAM.in. The logfile is named

IO2/log_timestep.log

where timestep refers to the time step when the logfile is opened. The logfile is only closed at the end of the run.
The logfile has a very simple structure:

headerline
it t var1 var2 var3 ...
...

where the headerline is a string describing the content. The second line is a list of the function names that are
saved usually starting with time step number and time (see the #SAVELOGFILE command for details). All subsequent
lines contain the values for these functions at the given time step. The logfile can be viewed with the UNIX more
command or with any editor (but do not use an editor if BATS-R-US is running and the logfile is still open), or it
can be read with the .r getlog script into IDL and plotted.

4.3. SATELLITE FILES 167

4.3 Satellite Files

Satellite files are used to extract information along a satellite trajectory. This is most useful in time accurate runs when
saving the full 3D files frequently enough to extract the data along the trajectory in post processing is prohibitive.
However, they have other uses.

The ASCII satellite files are also written into the plot directory. The frequency of saves and the content of the
satellite files are controlled by the #SATELLITES command in PARAM.in. The satellite files are

IO2/satelite_NN_satelitename.sat

where NN refers to the number of the satellite and satellitename is obtained from the input from PARAM.in.
These files are closed at the end of the run. The satellite files have the same structure as the log file:

headerline
it t var1 var2 var3 ...
...

where the headerline is a string describing the content. The second line is a list of the function names that are
saved starting with time step number and time (see the #SATELLITE command for details). All subsequent lines
contain the values for these functions at the given time step. The satllite files can be viewed with the UNIX more
command or with any editor (but do not use an editor if BATS-R-US is running and the files are still open).

4.4 Plotfiles

Plot files are used for visualization of spatially and temporarily distributed data. They can contain the values of various
functions along 1, 2 or 3 dimensional cuts of the computational domain. A series of plot files can be used to animate
the time evolution.

All the plotfiles are written into the plot directory, which has the default name IO2/which can be changed with the
#PLOTDIR command. The type and number of plot files and the frequency of saves are controlled by the #SAVEPLOT
command in PARAM.in.

Separate plot files are written out by each processor. The file names ensure that different plot files have different
names, and previously written saves do not get overwritten. The name looks like this

IO2/plotarea_plotvar_plotnumber_timestep_PEnumber.plotform

where plotarea and plotvar are given in PARAM.in, plotnumber is the serial number of the plot file based
on the order of plot file definitions after the #SAVEPLOT command; timestep is the number of time steps for the
whole simulation; PEnumber is the processor (starting from 0); and finally plotform is ’idl’ for IDL and ’tec’ for
TEC files.

The IDL files contain cell centered data, such as cell size, cell center position, and function values, while the TEC
files contain data interpolated to cell corners. The TEC files are always in ASCII format. The IDL files can be ASCII
or binary as determined by the #SAVEBINARY command in PARAM.in. Binary files are smaller, faster to write,
and there is no loss of accuracy, so this is the default. The ASCII files on the other hand, are human readable, and
transferable between machines.

In addition to the ’*.idl’ and ’*.tec’ files, an ASCII header file is written for each plotfile with a name

IO2/plotarea_plotvar_plotnumber_timestep.headextension

where headextension is ’h’ for the IDL and ’T’ for the Tecplot file formats. The header files contain basic information,
like time step, time, variable names, variable units etc. An exception to the above header extension is for the spherical
cut plot files (plotarea=’sph’). The Tecplot header files for these plots have the headextension ’S’.

168 CHAPTER 4. OUTPUT FILES

4.5 Postprocessing the IDL plot files
Since the plot files are produced by each processor separately, it is necessary to collect the data and produce a single
plot file. Furthermore, we can produce a single structured grid with a fixed resolution defined by the DxSavePlot
parameter in the #SAVEPLOT command. The requested resolution is saved in the .h header file. The differently sized
cells must be restricted and prolonged (with first order accuracy) into equally sized cells, which then must be arranged
into a structured grid. When the files contain a 2D cut (e.g. y=0), the data in the cells on the two sides of the cut plane
must be averaged. This is done both for structured and unstructured grids.

All the data collection and transformation described above are done by the

PostIDL.exe

code. To make this executable simply type

make PIDL

in the main directory. In the run directory there is a symbolic link to PostIDL.exe. To post process all the .idl files for
a single plot, type for example

PostIDL.exe < IO2/y=0_MHD_1_n0001200.h

in the run directory. The PostIDL code will read the headerfile, and all the corresponding .idl files, and it will produce
a single binary file

IO2/y=0_MHD_1_n0001200.out

This file contains all the header information and the information collected from the .idl files. It can be read and
visualized with the IDL macros provided in the Idl/ directory. Therefore the .h and .idl files can be deleted.

When there are many plotfiles produced by a simulation, all the Postprocessing can be done with a single command
by running the

pIDL

script. There is a link in the run directory to this script. The pIDL script does the post processing for all plots with a
corresponding .h header file in the IO2/ directory. After post processing it deletes the .h and .idl files automatically.
This default behavior can be modified with the two optional arguments. The first argument limits the post processing
to a subset of the plots, e.g.

pIDL IO2/x=0

will only process the plotfiles whose names start with ’x=0’. The second argument tells pIDL that the .h and .idl files
should be kept. For example

pIDL IO2/ KEEP

will process all the plots, but it keeps the original data files too.
The PostIDL.exe program can read both ASCII and binary .idl files. For binary .idl files, however, it is important

to have the same precision for reals as in BATS-R-US, ie. PostIDL.exe and BATSRUS.exe should be compiled with
the same PRECISION definition in the Makefile. The output of PostIDL.exe is a binary file, because IDL reads binary
files much faster than ASCII files. It also saves disk space. For testing purposes, however, /src/PostIDL.exe
can be edited to contain

logical, parameter :: write_binary=.false.

instead of the default .true. value. After recompilation with make PIDL, the modified PostIDL.exe code will write
ASCII output files.

4.6. POSTPROCESSING THE TEC PLOT FILES 169

4.5.1 Conversion of binary .out files with FixEndian.pl
The Scripts/IDL/FixEndian.pl Perl script solves the problems of transporting the binary .out files between different
platforms. The script can tell whether a machine is big endian or little endian (these differ in the ordering of bytes for
integers and reals), and it can test and convert the endianness of binary .out files, both in double and single precisions.
As an additional benefit, the 8-byte integers used by Cray can be converted to 4 byte integers and vice-versa.

Note that the ’assign -F f77 u=12’ command has to be used on the Cray before running PostIDL.exe, so that the
output file is in Fortran 77 binary format. Then the file should be FTP-d to a workstation/PC, and the FixEndian.pl
script should be executed there. The script does not work on the Cray, because even the Perl interpreter is non-standard
on a Cray.

Type Scripts/IDL/FixEndian.pl without any parameters to see the syntax of usage. An example of usage is to
check the content of a data file with the -t flag (test):

Scripts/IDL/FixEndian.pl -t run/IO2/y=0_mhd_1_n0001200.out

This is a big endian machine.

run/IO2/y=0_mhd_1_n0001200.out is a big endian single precision file.

headline=normalized variables
it=1200 t=0 ndim=2 neqpar=2 nw=11
nx=256,128
eqpar=1.66666,0
names=x z rho ux uy uz bx by bz p jx jy jz g cuty
...

The above output was obtained on an SGI workstation for a .out file obtained with an SGI Origin. In this case no
conversion is required.

4.6 Postprocessing the TEC plot files
Since the plot files are produced by each processor separately, it is necessary to collect the data and produce a single
plot file. Furthermore, Tecplot output files contain cell corner data rather than the cell centered data of IDL. Node
numbering and block edge synchronization occur prior to output so that very little processing needs to be done with
the output files.

Processing the .tec files happens in two separate steps. First, the individual files from each processor for each
plot have to be concatenated together and renamed as .dat files. Next, the files can be be processed with preplot,
an application included with Tecplot, which creates a binary file in tecplot native format.

A script has been created to more easily process Tecplot data. There is a link to this script called

pTEC

in the run directory. This script handles the processing of several different output data products including standard 2
or 3 dimensional output slices and spherical slice files in the IO2/ directory. Typing

pTEC -help

gives the following documentation on the type of arguments to pTEC and their functionality.

Usage:

pTEC [p,r,g,I,S,T,A,b=BASENAME]

170 CHAPTER 4. OUTPUT FILES

The order of flags does not matter. A maximum of 6 flags can be used.

- No arguments default to ’T’. See below.
- If ’S’ then spherical tecplot files are processed.
- If ’T’ then 2D and 3D tecplot files are processed.
- If ’A’ then all three file types are processed.
- If ’p’ and preplot is available in the PATH then it will also be run.

- If ’r’ is also specified, the .dat file will be deleted after preplot.
- If no ’r’ is specified, the .dat file will be gzip’d

- If ’g’ and not ’p’ then the .dat files will be gzip’d. Ignored if ’p’.
- If ’b=BASENAME’ then only files starting with the path BASENAME are

processed.
- To process all files in the IO2 directory use ’b=IO2/’ not ’b=IO2’
- If ’b=’ is not used ’T’ and ’S’ files are processed in IO2/

The pTEC script can be used with up to 6 of the 8 flags in any combination or order. However, some of the combina-
tions are not meaningful (we outline these below).

The capital flags control which type of files will be processed: (S) spherical slice, (T) 2D and 3D tecplot slices and
(A) all types (S+T). If none of these flags is given, then by default only 2D and 3D tecplot slices (T) will be processed.
Using more than one of the flags will have the intuitive result. By default the files are processed in the IO2/ directory.
This default behavior can be changed as described below.

For each type of file the individual file from each processor are concatenated or processed into .dat files. This
is an ASCII file that can be read by tecplot. Creation of 2D and 3D files just requires concatenation of the .tec files
(the associated .T header files are required for determining the number and names of files but are not included in
the concatenation). For spherical files the program PostSPH.exe is run. This programs must be compiled before
spherical files can be processed. Go to the main directory of the distribution and type

make PSPH

For spherical plot files the header file (.S) and the various other files from the different processors (.tec) are read
into PostSPH.exe and written out in the correct format.

Lower case flags control how much processing should take place after the creation of the .dat file. The ’p’ flag
indicates that the file should be converted to the tecplot native binary format using the program preplot provided in
the tecplot distribution. The resulting binary files have the extension .plt and are machine independent (see below
for a description of preplot). When ’p’ is set then the ’r’ flag can be used. With ’p’ only, the .plt files are created
and the original .dat files are gzipped to .dat.gz and saved. If in addition the ’r’ flag is set then the .dat files
are removed and only the .plt files remain.

Frequently the code will be run on a remote machine that does not have preplot installed. In this case the ’g’
flag can be used. If this flag is set the .dat files are gzipped to .dat.gz so that they are more easily sent over the
internet. This flag is ignored if ’p’ is set.

Finally, the b=BASENAME flag can be used to process files in any directory or to process a subset of the files. For
this flag BASENAME is a string that indicates the path and the initial part of the filename that should be processed. The
BASENAME does not accept wild cards. As an example, the command

pTEC S b=IO2_save/spN

will process only spherical slice files in the directory IO2 save/ whose filename starts with spN (in other words
spN*). The command

pTEC S b=IO2_save/

would process all the spherical plot slices in the directory IO2 save/. Note that the trailing ’/’ is required so that
the string IO2 save is interpreted as a directory and not the base filename to be used in the current directory. Also
note that there is only one ’b=’ flag, but that there are three different file types that are typically located in two

4.6. POSTPROCESSING THE TEC PLOT FILES 171

different directories. If the ’b=BASENAME’ flag is used, all file types will be looked for the the directory indicated by
BASENAME. For example, the command

pTEC A b=IO2/

will try to process all three file types (I+S+T) out of the IO2/ directory. It will find and process the ’S’ and ’T’ files
which would normally be located in this directory, but would not find and process the ’I’ files unless they had been
moved. We point out that the command

pTEC A

will process each file type in the default plot directory IO2/.
As indicated above Tecplot understands both ASCII files and files in its native binary format. Tecplot can read the

binary files more quickly the the ASCII files. We indicated above that .dat ASCII files can be converted to Tecplot
binaries by running the command

preplot newplotarea_plotvar_plotnumber_timestep.dat

This will create the file

newplotarea_plotvar_plotnumber_timestep.plt

without deleting the .dat file. These binary files are read more quickly by Tecplot. Preplot is a Tecplot program that
comes with the distribution of Tecplot. Note that preplot only converts a singe file at a time and does not accept wild
cards. In order to process several files at once you must write a script that will do this for you. The pTEC script above
can preplot the files for you while processing all the plot output. Alternatively, in the Scripts/TEC/ directory there
are several scripts that process an entire directory worth of tecplot files with preplot.

ppA

converts all .dat files in the current directory to .plt files using preplot. The .dat files remain.

ppAr

converts all .dat files in the current directory to .plt files and then deletes the .dat files.

ppgz KEEP

gunzips all .dat.gz files in the current directory. It then converts them to .plt files using preplot. If the KEEP
argument is present the .dat files are again compressed and retained. It the KEEP argument is missing the scripts
will delete the .dat files.

To finish, let us give two additional examples of processing Tecplot files. First, assume that BATS-R-US has been
run on 5 processors and has written files for a single plot at y=0 at time step 100. From the run directory, the command

ls IO2/*

would give the following output

IO2/y=0_mhd_1_n0000100.T
IO2/y=0_mhd_1_n0000100_pe0000.tec
IO2/y=0_mhd_1_n0000100_pe0001.tec
IO2/y=0_mhd_1_n0000100_pe0002.tec
IO2/y=0_mhd_1_n0000100_pe0003.tec
IO2/y=0_mhd_1_n0000100_pe0004.tec

This shows the header file and the individual Tecplot files, one for each processor. Typing the command

pTEC

172 CHAPTER 4. OUTPUT FILES

will process these data files. Listing the IO2 directory again would show the following file:

IO2/y=0_mhd_1_n0000100.dat

The file is simply the concatenation of each of the individual files. To convert to Tecplot binary files we could then
type

pTEC p

listing the directory will show the original file plus the new binary file.

y=0_mhd_1_n0000100.dat.gz
y=0_mhd_1_n0000100.plt

Of course this last step assumes that the current machine has preplot installed. The same effect could have been
achieved by typing one of the following commands

pTEC p
pTEC p T
pTEC p b=IO2/
pTEC p T b=IO2/
pTEC p T b=IO2/y=

As a second example, assume again that BATS-R-US has been run on 5 processors. This time, at step 100, 2 files have
been written: x=0 and a spherical slice. We are going to assume that the run was done on a remote machine that does
not have tecplot installed. We wish to process the files as much as possible on the remote machine, bring them back to
a machine that does have tecplot and preplot installed and then finish the processing locally. We will also assume that
for some reason the directories in which the files are stored on the remote machine are not the standard ones. For this
example the files that would normally have been in IO2/ have been moved to IO2 run1/.

To begin we need to compile the post processing codes. Go to the main directory of the distribution and type

make PSPH

This creates PostSPH.exe, which is used to process the spherical plot files.
Now move to the run directory and view the files. The command

ls IO2_run1/*

would give the following output

IO2_run1/spN_mhd_2_n0000100.S IO2_run1/x=0_mhd_1_n0000100.T
IO2_run1/spN_mhd_2_n0000100_pe0000.tec IO2_run1/x=0_mhd_1_n0000100_1_pe0000.tec
IO2_run1/spN_mhd_2_n0000100_pe0001.tec IO2_run1/x=0_mhd_1_n0000100_1_pe0001.tec
IO2_run1/spN_mhd_2_n0000100_pe0002.tec IO2_run1/x=0_mhd_1_n0000100_1_pe0002.tec
IO2_run1/spN_mhd_2_n0000100_pe0003.tec IO2_run1/x=0_mhd_1_n0000100_1_pe0003.tec
IO2_run1/spN_mhd_2_n0000100_pe0004.tec IO2_run1/x=0_mhd_1_n0000100_1_pe0004.tec
IO2_run1/spS_mhd_2_n0000100.S IO2_run1/x=0_mhd_1_n0000100_2_pe0000.tec
IO2_run1/spS_mhd_2_n0000100_pe0000.tec IO2_run1/x=0_mhd_1_n0000100_2_pe0001.tec
IO2_run1/spS_mhd_2_n0000100_pe0001.tec IO2_run1/x=0_mhd_1_n0000100_2_pe0002.tec
IO2_run1/spS_mhd_2_n0000100_pe0002.tec IO2_run1/x=0_mhd_1_n0000100_2_pe0003.tec
IO2_run1/spS_mhd_2_n0000100_pe0003.tec IO2_run1/x=0_mhd_1_n0000100_2_pe0004.tec
IO2_run1/spS_mhd_2_n0000100_pe0004.tec

Note that the northern and southern hemispheres are separated for the spherical plot files. In addition note that for
each ’PE’ there are two x=0 files

4.6. POSTPROCESSING THE TEC PLOT FILES 173

IO2_run1/x=0_mhd_1_n0000100_1_pe0000.tec
IO2_run1/x=0_mhd_1_n0000100_2_pe0000.tec

The first of these contains the data for this processor and the second contains the tree information for connecting the
blocks together.

Since tecplot and preplot are not installed on this machine we can only create the .dat files here (the ’p’ option
will not do anything). Because the files have been moved from their standard directories (IO2/ we will have to use
the ’b=’ flag. We can process the files using the command

./pTEC g T S b=IO2_run1/

Note that the three file types cannot be processed with a single command since they have been moved to new directo-
ries. The output from the command would be

==
Beginning cat of .tec files
==
--Working in directory: IO2_run1/ on files: ./*.T ./*.tec

working on x=0_mhd_1_n0000100 ...
compressing all *.dat files in directory: IO2_run1

==
Beginning processing of spherical slice files
==
--Working in directory: IO2_run1/ on files: ./*.S ./*.tec

working on spN_mhd_2_n0000100 ...
working on spS_mhd_2_n0000100 ...
compressing all *.dat files in directory: IO2_run1

We would now bring the files home using ftp or scp. In this example we copy all the files into an already existing
directory on our home machine. From the run directory type

scp IO2_run1/*.dat.gz myname@mymachine.edu:testdir/

This would secure copy the .dat.gz files to a machine named mymachine.edu to an account with username
myname into the directory testdir/.

On my home machine I have placed the following files in the bin directory in my home directory (which is
included in my PATH).

pTEC
ppgz
PostSPH.exe
preplot

Since all these programs can now be found in the path, to finish processing the files I simply go to the directory
testdir on my home machine and do one of two things. The first option is to type

gunzip *
pTEC A b=

which will gunzip all the files and then process them with pTEC. Since they have already be concatenated, the preplot-
ting step will be the only on executed. This command will leave the original files and a listing of files in the directory
will give

spN_mhd_2_n0000100.dat.gz
spN_mhd_2_n0000100.plt
spS_mhd_2_n0000100.dat.gz

174 CHAPTER 4. OUTPUT FILES

spS_mhd_2_n0000100.plt
x=0_mhd_1_n0000100.dat.gz
x=0_mhd_1_n0000100.plt

Alternately, the simple command

ppgz

will gunzip all the files, preplot them and then delete the original files. A listing of the directory would give.

in000100N.plt
spN_mhd_2_n0000100.plt
spS_mhd_2_n0000100.plt
x=0_mhd_1_n0000100.plt

Chapter 5

Visualization

5.1 Tecplot

Tecplot is a visualization package created by Amtec Engineering, Inc. out of Bellevue, Washington. The package
was originally designed for visualization of the output of computational fluid dynamics (CFD) codes and now is a
good multipurpose visualization package. The strengths of Tecplot are the point and click interface, the wide range
of options and the ability to produce high quality three dimensional images in postscript, encapsulated postscript, tiff
and other formats. The software comes with detailed documentation for processing data and creating images. Starting
in 2017, Tecplot provides the PyTecplot (at https://www.tecplot.com/docs/pytecplot/) package for connecting Python
scripts to the Tecplot 360 visualization engine.

Currently BATS-R-US supports output in Tecplot ASCII format, which can be processed by preplot into .plt
binary format. There is also an option of .dat output of ASCII header with binary data and connectivity, which is
more efficient but cannot be processed by preplot. This file can be read and converted into VTK files by the Julia
package mentioned in Section ??. The generated unstructured grid .vtu files can be read by Tecplot. The direct
support for Tecplot binary formats .plt and .szplt may be included in the future.

Tecplot requires a license.

5.2 IDL

IDL is well suited to visualize 1D and 2D data on structured and unstructured (AMR) grids, and 3D data on structured
grids. It is a full programming language that can perform complex data processing and visualization tasks efficiently.
The IDL programs developed for the SWMF can be found in the share/IDL/ directory including detailed docu-
mentation.

IDL requires a license, although it can be used in demo mode for free. In demo mode each session is limited to 7
minutes, which is actually sufficient to create plots.

5.3 MATLAB

MATLAB is a multi-paradigm numerical computing environment and proprietary programming language developed
by MathWorks. Link to the MATLAB package VisAnaMatlab is can be found in the share/MATLAB/ directory.
This package can read, process, and plot SWMF data, similarly to the IDL scripts.

MATLAB requires a license.

175

176 CHAPTER 5. VISUALIZATION

5.4 Julia
sec:julia)

Julia is a high-level, high-performance, dynamic programming language well-suited for high-performance numeri-
cal analysis and computational sciences. The VisAnaJulia package, available in share/Julia, is developed to read,
process and visualize SWMF output files. It also provides the functionality of converting Tecplot .dat format into
VTK format. Documentations can be found inside the package.

Julia is open source, as is the VisAnaJulia package.

5.5 VisIt
VisIt is a high performance visualization package built upon the VTK library. It can read the HDF5 output with
extension .batl.

Visit is free.

5.6 ParaView
ParaView is another high performance visualization package built upon the VTK library. The Tecplot .dat files from
BATS-R-US can be converted into VTK files with the VisAnaJulia package for processing in ParaView.

Paraview is free.

5.7 Python
Python is a very popular object oriented programming language. SpacePy has been developed to read and visualize
SWMF output. The swmfpy package in share/Python can perform various tasks related to the SWMF.

Python, SpacePy, swmfpy are all open source.

Chapter 6

The Synoptic Solar Wind Model

6.1 General Description of the Model
The synoptic solar wind model is designed to provide the the ambient physical conditions for the Solar Corona (SC),
the Inner Heliosphere (IH), and the Solar Wind (SW). The model is called “synoptic” due to the fact that it is driven by
synoptic maps of the observed surface radial magnetic field of the Sun throughout a whole Carrington Rotation (one
rotation period of the Sun in approximately 27 days). These maps are used to provide the inner boundary conditions
for the steady-state MHD solution in the domain between the Sun and the Earth.

There are two main issues when one tries to create numerical model for the solar corona. First, one needs to
specify the initial condition for the three-dimensional configuration of the magnetic field. Since the only constrain on
the magnetic field is the observed radial field on the surface, we use the common “Potential Field” approximation to
specify the initial field in the whole domain (see Section 6.2). The other issue is the solar wind heating and accelerating
mechanism. This issue is discussed in Section 6.3.

6.2 The potential field approximation
The solar corona is dominated by its magnetic field. Therefore, it is important to know what is the three dimensional
structure of the magnetic field in order to study the physical processes in the corona. Since the solar magnetic field
can be routinely measured only at the photosphere, where the plasma density is high enough for measuring the Zee-
man Splitting, one needs to find a way to approximate the global structure of the coronal magnetic field. The most
commonly used method to approximate the coronal magnetic field is the so-called ’potential field’ approximation
(Altschuler and Newkirk, Solar Physics, 9:131-149, 1969). In this approximation, it is assumed that the Alfvén speed
is much larger than the speed of convective motions in the low corona, so the field line relaxation time is much shorter
than the typical advection time scale. In other words, the field line will respond quickly to any motion we apply on it
(this motion can be seen as electric current) so in practice the magnetic field is static. Under the assumption that there
are no currents in a physical system, we can write Ampere’s law as follows:

∇×B = 0, (6.1)

and we can write B as a gradient of some scalar potential ψ:

B = −∇ψ. (6.2)

Since we also know that
∇ ·B = 0, (6.3)

combining eq. 6.2 with eq. 6.3 results in the Laplace equation for the scalar potential:

∇2ψ = 0. (6.4)

177

178 CHAPTER 6. THE SYNOPTIC SOLAR WIND MODEL

The general solution for this equation in spherical coordinates for
R0 < r < Rs is:

ψ(r, θ, φ) =

∞∑
n=1

n∑
m=0

[
R0

(
R0

r

)n+1

+Rs · cn
(
r

Rs

)n]
× (gmn cosmφ+ hmn sinmφ)Pnm(θ), (6.5)

which gives ψ = 0 at r = Rs for the choice of cn = −
(
R0

Rs

)n+2

, particularly as Rs → ∞. Pnm are the associ-
ated Legendre Polynomials, which are a function of cos θ. The coefficients gmn and hmn can be determined from the
photospheric magnetic field data and have magnetic field dimension.

Following the above solution, we can obtain the solution for the magnetic field components (Altschuler et al. 1969,
eqs. 8-10):

Br = −
∂ψ

∂r
=

∞∑
n=1

n∑
m=0

[
(n+ 1)

(
R0

r

)n+2

− n
(
r

Rs

)n−1
cn

]
× (gmn cosmφ+ hmn sinmφ)Pmn (θ), (6.6)

Bθ = −
1

r

∂ψ

∂θ
= −

∞∑
n=1

n∑
m=0

[(
R0

r

)n+2

+ cn

(
r

Rs

)n−1]

× (gmn cosmφ+ hmn sinmφ)
∂Pmn (θ)

∂θ
, (6.7)

Bφ = − 1

r sin θ

∂ψ

∂φ
=

∞∑
n=1

n∑
m=0

[(
R0

r

)n+2

+ cn

(
r

Rs

)n−1]
× m

sin θ
(gmn sinmφ− hmn cosmφ)Pmn (θ). (6.8)

We can determine the harmonic coefficients from the observed photospheric values of Br as follows. The orthog-
onality relation over a sphere with r = 1 for the general Legendre functions is:

1

4π

π∫
θ=0

2π∫
φ=0

Pnm(θ)

{
cosmφ
sinmφ

}
Pn′m′(θ)

{
cosm′φ
sinm′φ

}
sin θdθdφ =

Wδnn′δmm′ , (6.9)

where W is the normalization factor. For the general Legendre functions,

W =
2

2n+ 1

(n+m)!

(n−m)!
, (6.10)

and
W =

1

2n+ 1
(6.11)

for the Schmidt normalization, so the relation between the Schmidt (Pmn) and the general Legendre functions (Pnm)
is:

Pmn (θ) =

{
2
(n−m)!

(n+m)!

}1/2

Pnm(θ). (6.12)

6.2. THE POTENTIAL FIELD APPROXIMATION 179

In BATS-R-US, the polynomials are calculated with the Schmidt normalization. For r = R0 = 1, the radial magnetic
field becomes:

Br(θ, φ) =

∞∑
n=1

n∑
m=0

Rn

{
gmn
hmn

}
Pmn (θ)

{
cosmφ
sinmφ

}
, (6.13)

where Rn =

[
(n+ 1) + n

(
1
Rs

)2n+1
]

.

Following eq. 6.9, we can obtain the harmonic coefficients from the photospheric magnetic data, assuming the Schmidt
normalization of the Legendre functions (Altschuler et al. 1969):

{
gmn
hmn

}
=

2n+ 1

4πRn

π∫
θ=0

2π∫
φ=0

Br(r = R�, θ, φ)P
m
n (θ)

{
cosmφ
sinmφ

}
sin θdθdφ, (6.14)

where

Br =

{
Bmagnetogram for radial magnetogram,
Bmagnetogram

sin θ for Line-of-Sight magnetogram.

}
.

The discretized version of eq. 14 is (Altschuler et al. 1969, eq. 15):{
gmn
hmn

}
=

1

A

2n+ 1

Rn

Nθ−1∑
i=0

Nφ−1∑
j=0

Br(i, j) · dai,j · Pmn (θi)

{
cosmφj
sinmφj ,

}
(6.15)

where dai,j = sin θidθdφ and A =
∑Nθ−1
i=0

∑Nφ−1
j=0 dai,j = 4π for r = R�.

In SWMF, there is a utility tool to calculate the spherical harmonic coefficients from raw magnetogram. The tool
is located at:

SWMF_DIR/util/DATAREAD/srcMagnetogram

This directory contains the following README file with instructions how to create the input harmonics file needed
for the SC model:

##
How to create a magnetogram input file for SWMF from a raw magnetogram
fits file:
##

These are the steps for creating a magnetogram file for SWMF from
any raw magnetogram fits file.

1. Install SWMF (Config.pl -install).
2. Compile the HARMONICS executable by typing:
make HARMONICS
in the directory SWMF_path/util/DATAREAD/srcMagnetogram. This will
create the HARMONICS.exe executable in the directory SWMF_path/bin

3. For convenient, you can create a link to this executable from the path
SWMF_path/util/DATAREAD/srcMagnetogram by typing:
ln -s ../../../bin/HARMONICS.exe HARMONICS.exe
4. Type:
cp your_magnetoram_file.fits fitsfile.fits
5. Convert the fits file to ASCII format by running the idl program

180 CHAPTER 6. THE SYNOPTIC SOLAR WIND MODEL

fits_to_ascii.pro. You will be asked to insert the maximum order of
harmonics and the Carrington Rotation number. It is recommended (but not
required) to use not more than 90 harmonics, since the computation time
can be very long.

The idl routine generates three files:

*fitsfile.dat - ASCII file to be used by HARMONICS.exe to calculate
the harmonic coefficients.

*fitsfile.H - the header of the original fits file with information
about the magnetogram source.

*fitsfile_tec.dat - a Tecplot file to display the original magnetogram.
6. Run HARMONICS.exe. This executable can be run in parallel mode for faster
computation. This run will generate a file called harmonics.dat that
can be used in SWMF. For convenient, it is recommended to rename the file with
the following naming format:
cp harmonics.dat CRxxxx_OBS.dat
where xxxx is the Carrington Rotation number and OBS is the observatory name
(MDI,WSO,MWO,GONG etc.)
7. Move the magnetogram harmonics file to the path defined in the PFSSM flag
in PARAM.in file (usually run/SC).

Note: this routine does not interpolate missing data or the polar flux. You
have to make sure that the raw magnetogram is properly processed!!!!

6.3 Semi-empirical Model for the Solar Wind
Numerical reproduction of the solar corona steady-state conditions has been extensively investigated since the famous
work by (Pneuman and Kopp, Solar Physics, 18:258, 1971).Traditionally, the deposition of energy and/or momentum
into the solar wind has been described by means of some empirical source terms (Usmanov 93, McKenzie 97, Mikic
99, Suess 99, Wu 99, Groth 00). In these models, the sources of plasma heating and solar wind acceleration are
typically modeled in a qualitative sense, and the spatial profiles for the deposition of the energy or momentum are
usually modeled by exponentials in radial distance. In more realistic models, the solar wind is heated and accelerated
by the energy and momentum interchange between the solar plasma and large-scale Alfvén turbulence (Jacques 77,
Dewar 70, Barnes 92, Usmanov 00 and 03).

Due to the small number of observations at 1 AU, it is reasonable to adopt semi-empirical models. Assimilating
a long history of solar wind observations, these models are very efficient and quite accurate. A particular example is
the Wang-Sheeley-Arge model (WSA, Arge and Pizzo 00,Arge et. al 04). This model uses the observed photospheric
magnetic field to determine the coronal field configuration, which is then used to estimate the distribution of the
final speed of the solar wind, usw. The common disadvantage of semi-empirical models is that they are physically
incomplete.

We use the model by Cohen et. al (07) to obtain the steady-state SC and IH solution. The SC and IH modules
of SWMF are versions of the BASTRUS global MHD code, which is fully parallel and has adaptive mesh refinement
capabilities (see Powell 99). Our SC model is driven by high-resolution SOHO MDI magnetograms. We use the
magnetogram data to calculate the potential magnetic field, assuming the source surface is at Rss = 2.5R�, where
R� is the solar radius, and use this distribution of the magnetic field as an initial condition.

The heating and acceleration of the solar wind plasma are achieved by using a non-uniform spatial distribution of
γ. In order to obtain a more realistic distribution, we use the empirical Wang-Sheeley-Arge (WSA) model as an input
to our model. The WSA model uses the potential field distribution to obtain the magnetic flux tube expansion factor
defined as (Wang and Sheeley 90):

fs =
|B(Rs)|R2

s

|B(R0)|R2
0

. (6.16)

6.3. SEMI-EMPIRICAL MODEL FOR THE SOLAR WIND 181

The WSA model provides an empirical relation for the spherical distribution of the solar wind speed at 1AU as a
function of fs and the angular distance of a magnetic field footpoint from the coronal hole boundary, θb. In our model,
we use the following formula (Arge et. al 2004):

usw = 265 +
1.5

(1 + fs)1/3

{
5.9− 1.5e[1−(θb/7)

5/2]
}7/2

km s−1. (6.17)

A more up-to-date formula (after personal communication with N. Arge 2006) is:

usw = 240 +
675

(1 + fs)1/4.5
{1− 0.8

e[1−(θb/2.8)
5/4]

e1
}3 km s−1 (6.18)

We should note two important issues about the WSA model. First, one should be aware of the fact that the WSA
solution depends on the magnetogram resolution and the is not the same for different observatories. This is due to the
different mapping of the potential field and the expansion factor. Second, the WSA fitting is done for 1AU, while we
use it in the model at the source surface. This is the main reason for deviations of the MHD solution from the WSA
solution.

In order to relate the surface value of γ to the WSA solar wind speeds, we assume that far from the Sun the total
energy is dominated by the energy of the bulk motion and that the thermal and gravitational energy are negligible.
We also assume that at the coronal base the bulk kinetic energy is zero. Due to energy conservation, we can use the
Bernoulli equation to relate the two ends of a streamline (or magnetic field line):

u2sw(θ, φ)

2
=

γ0(θ0, φ0)

[γ0(θ0, φ0)− 1]

p0(θ0, φ0)

ρ0(θ0, φ0)
− GM�

R�
. (6.19)

Here usw is the input solar wind speed from the WSA model, G is the gravitational constant, and M� is the
solar mass. γ0, p0, and ρ0 are the photospheric values for the polytropic index, pressure, and mass density. The
coordinates θ0, φ0 represent the location of the field line footpoint, usw(θ, φ) originated from. We interpolate γ from
its photospheric value to a spherically uniform value of 1.1 on the source surface at r = 2.5R�. γ is linearly varied
from 1.1 to 1.5 for 2.5R� < r < 12.5R�, and γ = 1.5 above 12.5R�.Once the spatial distribution of γ is obtained,
we solve the MHD equations self-consistently using this location dependent polytropic index in the energy equation
to obtain the steady state solution for the SC and solar wind.

The above distribution of γ enables us to reproduce the bi-modal structure of the solar wind speed. However, the
distributions of the coronal density and temperature are still not determined. It is known that the faster wind originates
from coronal holes, where the density is lower than the density in the closed field regions. In order to obtain this
observed property, we scale the base density, ρ0, and the base temperature, T0, at each point on the solar surface with
the inverse of the input speed from the WSA model. We would like our model to be driven only by the magnetogram
data without any particular parameterization for each Carrington Rotation (CR). Therefore, we parameterize the model
for the general cases of solar minimum and solar maximum conditions.

The general method to obtain steady-state solution from the Sun to 1AU is to run the SC component to steady-state,
then turn on IH and couple the two components for some time (1 iteration or more). the coupling will drive IH through
the inner boundary conditions (provided by SC) and the since the solar wind is supersonic at this point, a steady-state
is obtained quickly in IH as well. In principle, it is enough to couple SC-IH for only one iteration. It is possible to do
the coupling for longer period in order to obtain slightly higher magnetic field close to the equator due to the different
boundary conditions with and without the coupling. Our experience however showed that the difference is minimal.

The SC-IH runs can be done in the HGR coordinate system (the frame rotating with the Sun) or in the HGI frame
(inertial frame). The HGR run can be done in a local time stepping mode, while the HGI run must be done in a
time-accurate mode. There are sample PARAM.in files to obtain SC-IH steady-state solution in either frame:

SWMF_DIR/Param/PARAM.in.test.start.SCIH.HGR

SWMF_DIR/Param/PARAM.in.test.start.SCIH.HGI

In principle, you only need to change the parameters related to the particular CR such as magnetogram file name,
#STARTTIME and satellite files. However, from our experience the free parameters of the model should be changed
as well.

182 CHAPTER 6. THE SYNOPTIC SOLAR WIND MODEL

6.4 Model Parameterization
The SC model was originally planned to have fixed parameters so the only change from one CR to another is the
input magnetogram. Our experience has shown however, that a better solution can be obtained for a particular CR by
modifying the base density (BodyNDim in the #BODY command) and the magnetogram scaling factor (UnitB in the
#PFSSM command). The value range for BodyNDim should be 1 × 108 − 5 × 108 (in cm−3) and for UnitB should
be 1 − 4. The recommended scaling factor for MDI magnetograms is 1.8 and our experience showed that a value of
2.5 is better for solar minimum rotations of 1997. For solar maximum, we recommend to use higher value of 4.

We should note that the fine tuning is important for obtaining good agreement with 1AU data, which is very hard
when using global model. The parameterization should be easier in the case of simulations of the solar corona only. A
more detailed validation of the model can be found in:

Cohen, O.; Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.,
Validation of a synoptic solar wind model,
Journal of Geophysical Research, VOL. 113, A03104, doi:10.1029/2007JA012797, 2008

All parameterization above was done using MDI magnetograms. For other data sources one should use different
values. WSO, MWO, and GONG data seems to have weaker field than MDI and SOLIS data. Therefore, a larger
scaling factor should be used.

